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Preface 

Someday, world-wide communication networks will connect millions of computers residing in 
people's homes, offices, cars, and various public places. People will be able to share information 
easily like never before. One can envision global "knowledge bases" that permit individuals and cor
porations ready access to enormous amounts of publicly available data. Students in this past 
semester's course, "Advanced Topics in Distributed Computing Systems", were given the assignment 
of exploring techniques for building, updating, accessing, and controlling such large storage systems. 

This report presents the outcome of these explorations: an architecture for a globally-distributed 
active file system. Shai Gozani and Steve Schoettler looked at replication mechanisms; Mary Gray 
and Ethan Munson worked on how to name and locate files; Srinivasan Keshav and Mark Sullivan 
developed techniques for security and authentication among mutually suspicious organizations; and 
Vijay Madisetti and Mendel Rosenblum defined the file system semantics and trigger facilities. The 
resulting design is but a first step towards tackling the problems of large-scale distributed computing. 

Doug Terry 
June 1987 
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1. Introduction 

1.1. The Environment of GAFFES 

GAFFES is a design for a very large-scale distributed file system intended to serve on the order 
of several million users who could potentially access any file in the system. Oients could use 
GAFFES as a tool for the storage and retrieval of information ranging from on-line newspapers to 
computer programs to electronic mail. GAFFES must guarantee certain levels of performance, availa
bility and security in order to satisfy its users. 

The network over which GAFFES is designed to operate could connect computers having a 
wide range of performance and running many different operating systems. The performance of future 
networks may continue to vary from that of low-speed telephone lines to high-speed optical fibers. 
GAFFES must allow the user to make use of knowledge about the speed of the network without 
requiring such knowledge from all users. 

The client workstations connected by this network would be quite heterogeneous, ranging in 
power from desktop personal computers to large mainframes. GAFFES must provide services that are 
both sufficiently simple and sufficiently powerful to meet the needs of this complex client mixture. 

The heterogeneity seen in the hardware and system software of the network extends into its 
administration. A global network naturally crosses many national boundaries. Each nation's portion of 
the network would likely be managed by a different organization (usually the national phone com
pany). For security and economic reasons, some corporate and government entities may manage their 
own independent subnets. The corporate and government subnets would be particularly concerned 
with assuring the privacy of their files. 

1.2. Assumed Facilities 

GAFFES was designed to be built on a base of transactional file servers and RPC communica
tions. The file servers provide means for storing unstructured files (each file is a logical sequence of 
data bytes), identifying files uniquely, and performing common file operations (read, write, etc.). The 
file servers also allow operations on multiple files stored on multiple servers to be performed with tran
sactional guarantees (serializability and atomicity). The RPC communication mechanism permits reli
able transmission of structured (typed) data. RPC communication can be performed between any two 
machines in the network, though no performance guarantees are made. 

Each client workstation and server machine has a globally-unique identifier. This identifier is 
not necessarily human-readable. GAFFES also assumes that each workstation and server contains 
hardware encryption devices that can be used in security procedures. Mechanisms exist for generating 
the public-key/private-key pairs used by the security system on demand. 

1.3. Required Features 

From the start, GAFFES was expected to provide clients with many of the operations and 
assurances that one expects from a single-machine file system. In addition, some of GAFFES' features 
represent extensions to traditional file systems that we considered important 

Files in GAFFES may contain embedded references to other files. Files can be made 'active' 
through the use of triggers, which are programs invoked by file operations. Examples of the uses of 
triggers are found in automatic compilation or remote distribution of files. 

GAFFES files have unique names that are independent of a user's location, the file's location, or 
the number of replicas of the file. This supports sharing and shelters users from many of the complexi
ties of the distributed file system. Moreover, to reduce the complexity of searching for files, clients 
may identify files with descriptive names that allow files to be accessed based on their content. 

The security component of GAFFES is designed so that each organization has autonomous con
trol over the security of its own files. The rights of individual users and groups of users to perform 
operations on a file may be freely granted or revoked. The security system provides a uniform mechan
ism for authenticating users and ensures the privacy of both data and operations from unauthorized 
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users. 

In any file system, choices are made about the relative importance of performance and availabil

ity and about the consistency of shared files. Although GAFFES is intended to be used more as a 

general-purpose information distribution and sharing facility than as a high-speed transactional system, 

the GAFFES community would be far too diverse to be served by a single alternative among the vari

ous performance, availability and consistency tradeoffs. Therefore, users of GAFFES achieve desired 

levels of availability and performance through individual decisions about the replication and caching 

of their files. The creator of a file specifies its degree of replication, thereby determining its availabil

ity. Each client performing a file operation specifies whether caching should be used and what degree 

of consistency is desired for cached copies. 

1.4. Overview of Solution 

The GAFFES global file system has five major components: 

(1) A set of file server primitives; 

{2) A name service; 

(3) A security system; 

{4) A replication service; 

{5) A trigger mechanism through which files are made active. 

The five components of GAFFES are largely independent of each other. For example, while the nam

ing service stores information about the location of replication servers and about whether files are 

replicated, it has no knowledge of where file replicas are stored and no means of determining this 

information other than the operations available to clients. We believe that this independence is a 

feature that sets GAFFES apart from other distributed systems. To the best of our knowledge, existing 

system designs either lack this independence or assume that independent subsystems will be available 
without actually providing them. We show that designing a system comprised of these independent 

components is possible, while highlighting the problems that arise and the compromises that are neces

sary to join these components together. 

1.5. What Follows 

This report is divided into eight sections, the first being this introduction. The next section 

describes the semantics of the file system. The naming service is discussed in the third section. The 

following two sections cover the security and replication systems. The seventh section describes 

triggers. The final section presents overall conclusions. GAFFES is an experimental design; it was not 

built, nor is it intended to be built 

1.6. Acknowledgements 

We gratefully acknowledge Professor Domenico Ferrari for providing the support that made this 

project possible, and Dr. Dale Skeen for his contributions. We also thank Stuart Sechrest and P. Yen

kat Rangan for their suggestions and help with the security section of this paper. 

2. File System Semantics 

In this section on the file system semantics of GAFFES, we describe the design decisions sup

porting embedded references, version histories for files, transactions, and transparent distributed file 

access. These design decisions affect the organization and structure of files, and the client interface to 

the file system. An embedded reference is the name of a file or part of a file which is contained in 

another file. Embedded references can be used to express relationships between files such as inclu

sions. We discuss the design and use of triggers for active files in a later section. 
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2.1. Design Goals for File System Semantics 

In a diverse environment there will be clients, referred to in this paper as complex clients, who 

demand high performance and access to the complex features of the file system. Complex clients may 

want to interface closely with the replication, name, and authentication services to obtain the highest 

performance and control of the services provided. There will also be clients, called simple clients, 

who may require only simple reading and writing of files. Simple clients would rather not have to deal 

with very complex interfaces and file system semantics. The design of the semantics should cater to 

both simple and complex clients. 

Implementing functionality on the servers, which would otherwise be implemented on each 

client machine, has the potential of massive reduction in implementation cost It is much more desir

able to implement a function once on the servers rather than once for each type of client on the system. 

On the other hand, if the servers provide functionality, client interfaces to the servers can become more 

complex and harder to implement. Simple clients who desire only a subset of the functionality, may be 

forced into choosing between a very expensive full implementation of the interface or a partial imple

mentation that may make some information in the file system inaccessible. 

Another design consideration is how best to map the presented file system into the client 

environment It should be possible to fit the semantics of the file system into a wide range of operating 

environments. 

The design of the file system semantics caters to both complex and simple clients. To accom

plish this goal, the design provides the functionality desired by complex clients allowing high perfor

mance access to the file system. On top of this interface, the servers also provide a less complex inter

face for simple clients. Whenever possible, the interface is structured so complex clients can set up 

transparent access to advance features for simple clients. For example, complex clients can create 

embedded references, version control mechanisms, and triggers, which are transparently invoked by 

simple clients' operations. 

2.2. File Organization 

Files are defined as a contiguous sequence of client-definable blocks. Division of files into 

blocks lends itself gracefully to the use of embedded references. Intermixing embedded reference con

trol and data in an otherwise unstructured file leads to both implementation and client interface prob

lems. Having embedded references located in special blocks simplifies the task of keeping track of 

embedded references for house keeping functions such as garbage collection. 

In addition to the role blocks play in resolving embedded references, a file system providing this 

service on the server relieves the client operating system from the need to provide its own file 'block

ing' system. In a large scale distributed environment, providing for the division of files into blocks on 

the servers is in itself a software advantage. The structure of a file into blocks is convenient for many 

applications. In the case of a mailing system, mail messages for users can be stored as separate blocks 

of an inbox file. 

To support both complex and simple clients, two views of file organization are provided. These 

are the "logical" and the "virtual" views. 

2.2.1. The Logical View 

In the logical file view, the file is organized as a sequence of blocks of two types, data blocks 

and embedded reference blocks. A data block is a logically contiguous array of zero or more bytes of 

data. Interpretation of the bytes in a data block is left to the clients; no interpretation is done by the file 

system servers. Oients may create files with any number of data blocks of arbitrary size. The sizes of 

data blocks in a file are not fixed, and they can be extended or shortened independently from other 

blocks in the file. 

Embedded reference blocks are blocks containing a name of another file and, optionally, a range 

of numbers of logical blocks of that file. An embedded reference which does not specify a block range 

implies a range which includes every logical block of the file. Logical blocks are addressed as integers 
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numbered from one with each block, embedded reference or data, given a unique consecutive integer. 

2.2.2. The Virtual View 

The virtual file view presents files as a sequence of data blocks. All embedded references in this 

view are automatically followed and resolved to data blocks. A client using this view sees a file as an 

array of data blocks which may come from different logical files. 

Virtual file blocks are addressed as a sequence of data blocks from one for more different logical 
files which are numbered as integers from one. Figure 2.1 shows the differences between logical and 

virtual files. The block numbers on the right side of files in the figure are logical numbers, while 
numbers on the left are virtual block numbers. Note that when a file includes no embedded references, 

as in the case of file "foo" and "foo3" in figure 2.1, the logical block numbers are the same as the vir

tual. Virtual block numbers come from viewing the file as consecutive data blocks which may include 

data blocks from other logical files via embedded references. Using virtual block numbers, the same 

data block is assigned different block numbers in different files. For example, virtual block number 4 

of file "foo2" is logical data block 3 of file "foo3". This data block is also virtual block 11 of file 

"myfile". File "myfile" has 8logical blocks and 12 virtual blocks. 

We decided that the ability to include a file without knowledge of the number of blocks in that 
file is useful to clients. Including this feature in the design led to unfortunate file semantics. Consider 

the case of a client adding blocks to a file that is included as a embedded reference in another file. In 

figure 2.1, this would be the case if a client added blocks to file "foo2". Such addition of blocks may 

cause some of the virtual blocks of the the file embedding the enlarged file to become renumbered. We 
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anticipate that correctly operating clients will avoid this situation by including only immutable files, 

such as files qualified with a version number, in an embedded reference. The usefulness of including 

files of unknown block counts outweighed the potential hazards introduced. 

2.2.3. Reason for Two Views 

The design goal of supporting a wide range of clients was our motivation for providing logical 

and virtual views of the file system. The virtual view allows simple clients to ignore the existence of 

embedded reference and treat files as containing only data blocks. Such clients still get to use the 

inclusion facility of embedded reference yet require no extra code above the normal data block read 

and write primitives. These semantics allow clients transparently to use embedded references created 

by complex clients. It would be easier to map the semantics of current common file systems to the vir

tual view rather than the logical view. 

The use of the name and block number of a file in an embedded reference provides some 

interesting options for clients. Using the naming methods for the file system, an embedded reference 

can point at a block in a specified version of a file or always point at the most recent version of the file. 

Embedded files are permitted the same benefits of caching and replication that are provided to all 
clients of the system. 

2.2.4. Operations on Blocks 

To access files, clients use the normal read and write routines specifying the block numbers and 

types, virtual or logical. This is done by having different read and write primitives: read _logical, 

write _logical, read_ virtual, write_ virtual. When writing blocks by logical block numbers, clients 

must specify whether the block type is an embedded reference or data, for each block. Logical block 

reads return the block type along with the data or embedded reference block. Since block sizes vary 

widely, clients can read many blocks in a single request or just a byte range inside a block. Clients 

using the virtual view routines can ignore the existence of embedded references and treat every block 

of the file as a data block. The operation returns an error if an embedded reference is unresolvable to a 

data block. This error can occur if the user does not have the necessary permissions to access an 

embedded file, the specified block does not exist, or the block is inaccessible. Additionally, a function 

is provided for returning the size and type of each block in a view of a file. This function is useful for 

emulating a byte array file structure, such as found in UNIX, on virtual files. 

2.3. Client Interface to the File System 

Clients access file system services by doing remote procedure calls to a server machine. To sup

port simple clients, the servers hide the distributed nature of the file system and present it as a single 

file system which may be accessed through any server. Complex clients can communicate directly 

with the name, replication, storage, and authentication servers, and are aware of the distributed nature 

of the file system, while simple clients can treat the file system as a black box. It is not unreasonable 

for a high performance client to wish to communicate directly with a storage server which contains its 

files. Simple clients would like a trusted server to perform these tasks on their behalf. 

2.3.1. File Location Operations 

Files are accessed by retrieving a handle for the file from the naming and replication services. 

Among other things, this handle indicates a list of servers that can efficiently process operations on the 

file. Clients may send a request with such a handle to any server. If a server gets a request with a han

dle that does not include it, it will try to forward the request to the correct server for processing. A 

high performance client would bypass the forwarding step by looking at the handle and communicat

ing directly with the correct servers. This automatic forwarding of requests means that clients need not 

know how to talk with all servers in the system. This is crucial for supporting very large distributed 

systems. If each client had to communicate directly with the correct server, the requirements placed 

on the communication subsystem would scale poorly. The interface provided reduces the problem of 

requiring every client to know how to communicate with every server to the problem of asking every 



7 

server to do be able to do so. The number of servers in the system is much smaller than the number of 
clients. Existing name server and network management techniques, such as used on the Arpanet, can 

be used amongst the servers. 

Ai1ditionally, the system allows simple clients to avoid communicating with name and authenti
cation servers by allowing them to pass a name to the open call rather than a handle. The servers do 
the necessary handle lookup from the name servers and open the file for the client. 

2.3.2. Transaction Management 

All client requests must be performed as part of a transaction which is run as a set of atomic seri
alizable actions with respect to all other requests. A traditional transactional file server interface is 
used which supports nested transactions affecting files on any number of servers. Simple clients may 

have transactions automatically generated for them by the servers. 

2.3.2.1. Explicit Transaction Control 

The level of client involvement in transaction management is left up to the client Complex 
clients may have explicit control by calling the open_transaction primitive, which returns a transac
tion ID under which operations on files are performed. All requests for operations sent to servers must 
present this ID. Nested transactions may be created by passing this ID to another open_transaction 
request. When all the operations of this transaction have returned, the transaction may be committed 
or aborted by calling commit_transaction or abort_transaction. The semantics of the operation are 
totally independent of the location of files. No "add server" call is needed. A server automatically joins 
a transaction when a file located at its site is used. In addition to the user being able to abort a transac
tion, the file system reserves the right to abort transactions and inform the user upon the next operation 

which references that transaction. Clients must be prepared to handle such aborted transactions. 

2.3.2.2. Implicit Transaction Control 

The transaction-oriented interface may be too complex for simple clients. To support these 
clients, the file system supports a non-transactional interface. The primitive operations sent without a 
transaction ID are automatically given a valid transaction ID by the server and processed under this 
transaction. The client does not have to open or commit the transaction. Each open request creates a 
transaction under which all reads. and writes are processed. Closing the file commits the transaction. 
The close will return an error if the transaction cannot be committed. Clients can be unaware of any 

transactions or the distribution of the files in the system. 

2.4. Support for Versions 

The file system semantics provide support for clients that wish to maintain a version history of 
files. File system support is provided for creating, accessing and deleting versions of files. The support 
consists of naming conventions, triggers, and file modification semantics which permit clients to 

implement version files. The file system provides mechanisms but does not make many policy deci
sions about versions. Policy decisions such as how many versions to allow and how long to keep old 
versions are left to the clients to decide. 

2.4.1. Naming of Versions 

The naming system provides a consistent way to address versions of files. File names may be 
given with or without a version number specified. We refer to Files names with a version number 
specified as qualified names while those without are termed unqualified names. 

2.4.2. Version Creation Semantics 

The file modification operation depends on whether the file name given is qualified or 
wtqualified. When unqualified file names are used, a copy of the current highest version of the logical 

file is made and all modifications are made on that copy. When the transaction controlling the 
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modification commits, the modified copy becomes the highest available version number of the file. 
Qualified references do not perform the initial copy operations. Instead, committed modifications 
appear in the original file. This implies that older versions need not necessarily be immutable. Clients 
can make this policy decision for themselves by using a special version trigger, as explained below. 

Supporting versions at this level has several benefits. If a file is consistently referenced without 
an explicit version number, new versions are created with each modification, and the naming support 
insures that clients always get the highest-numbered version. If the old versions are not deleted, a 
complete modification history of the file exists. Clients are free to use the naming support for versions 
and can substitute their own version creation routines by explicitly referencing the new versions by 
number. For example, clients wishing to save disk space by implementing versions with forwards or 
backwards deltas are free to do so. Clients could use embedded reference blocks to reduce the number 
of copies of a block needed to be keep on disk. Support for versions of this form is best left to the 
client programs. 

2.4.3. Version Triggers 

In addition to a copy being made at new version creation time, a user-definable trigger, called 
the version trigger is executed. This trigger is intended to implement the old version cleanup policy of 
the client. 

The version control trigger may be used by clients to implement an arbitrarily complex cleanup 
policy for old versions. For example, a client's trigger may delete versions older than a certain number 
of days or delete old versions until the space used by versions is less than a certain threshold More 
complex triggers can implement compression routines to make old versions smaller. A client can 
implement immutable files with a version trigger that removes all write access to old versions upon 
creation of a new version. Triggers are discussed in a later section. 

2.5. Summary 

Semantics of the file system for the design of GAFFES include support for features such as 
embedded references, triggers, transactions, version histories for files, and transparent distributed 
access to files. Files are divided into user-defined blocks allowing support of embedded references. 
Two different views of the file system semantics are presented to the clients to support different levels 
of processing sophistication. 

3. Naming and File Location 

The GAFFES name service provides the functions that permit users and the applications they 
use to map string names of files to the objects which manage the files. Precisely what type of system 
service manages the files depends on whether the file is replicated. Unreplicated files are managed by 
disk servers. Replicated files are managed by replication servers. Each replicated file is managed by a 
particular replication server, but since there may be multiple copies of that replication server, the name 
service must map the file name to a list of replication server instances. Logically, the name service 
supports the function: 

FindFi/eName(name) -> <disk server handle or list of replication server handles>. 

A server handle has two parts, a network address to be used for remote procedure calls and a public 
key to allow the user to authenticate the server. Those names which can be successfully mapped to 
server handles form the GAFFES namespace. 

The name service supports several other operations besides the name lookup function. Users 
may add and delete file names. There are also administrative functions for the addition and deletion of 
name servers. The name service also provides some support for the security system. As is described 
more fully in the security section of this report, the keys which are used to authenticate roles are stored 
in files. Thus, a portion of the namespace is taken up by the key files corresponding to each role. The 
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name servers also support the security system by having public key/private key pairs themselves. 

The next five sections describe the GAFFES name service in more detail. The goals and objec
tives that motivated the design are presented in the second section. The third section describes the 
namespace, the structure of the name service, and the user level operations. Descriptive names, which 
supplement the primary namespace, are discussed in the next section. The operations which allow sys
tem administrators to adapt the name service to alterations in usage are outlined in the fifth section. 
The last section presents some conclusions. 

3.1. Design Objectives 

The design of the GAFFES name service was based on four goals: performance, availability, 
scalability, and a consistent, low complexity user interface. Since the meanings of perfonnance, avai
lability, and scalability are related, it is worthwhile to define these goals more carefully. In this paper, 
the goals of performance and availability refer to the behavior of a static system of millions of works
tations. Scalability is the goal of maintaining the same level of performance and availability in the 
face of substantial changes in the size of the system. Our goal for the user interface was that the user 
only need to specify a logical name to be able to access a file and that once this name was assigned ini
tially, it need not change despite system changes. These four goals gave rise to the following objec
tives which, in turn, guided the design of the name service. The first set of objectives is primarily con
cerned with insuring adequate performance, availability, and scalability. 

Decentralized Servers 
Decentralization of the name service is critical to insure performance, availability, and scalabil
ity. Centralized services are almost certain to become bottlenecks that degrade performance. 
Even if such bottlenecks can be prevented, new bottlenecks are likely to be created by changes 
in system scale. Centralized services also threaten availability because loss of the central ser
vice cripples the whole system instead of just a subset of the system. In GAFFES, this objective 
is primarily fulfilled through replication of the name servers. 

Decentralized Knowledge 
Knowledge of the namespace must also be decentralized. One way to have decentralized 
servers is to give many hosts in the system full copies of the name server database. While this 
will improve the perfonnance of lookups, it places considerable overhead on the operations 
which update the namespace, since these operations must alter all copies of the database. Cer
tain system faults, such as network partitions, could make the update operations unavailable. 
Scalability would also be poor, since the full name server database for a million workstations 
would be huge, requiring large storage facilities on each machine running a server instance. 
Thus, the name service's knowledge should be divided so that each machine supporting an 
instance of the name service need only keep track of a reasonable subset of the total knowledge. 

Adaptability 
Since GAFFES is not a static system, its name service must adapt to maintain performance and 
availability in the face of changes in demand. These changes may be either growth or shrinkage 
and may occur either globally or locally. The name service must adapt to these changes 'in 
place', because it would be intolerable to have to 'take the system down' for each 
reconfiguration. 

The following objectives are primarily related to the goal of a consistent, low complexity user inter
face. Most of these objectives attempt to let the user ignore the details of file storage and name service 
configuration. 

Uniform Naming 
A single naming convention should prevail throughout the entire namespace. The structure of 
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the namespace should appear the same regardless of the user's position in the namespace. This 
distributed file system should appear to be one unified file system. This is similar to the file sys
tem view provided in Locus [Walker 83]. 

Location Transparency 
It is important that services (e.g. disk servers or name servers) be allowed to come and go 
without requiring objects to be renamed. If object names are tied to the location of services han
dling them, objects will either be subject to frequent renaming or poor availability. 

Replication Transparency 
A user should not need to know whether a file is replicated in order to access it. 

Scale Change Transparency 
The name service should be allowed to grow or shrink without requiring renaming of files. This 
is similar to location transparency, but its primary goal is increased scalability as opposed to 
consistency of the user interface. 

Easy generation or unambiguous names 
It is not possible for a user of a large system to keep track of the names of all files in the system. 
It must be simple and inexpensive for a user to choose a useful, globally unique name for a new 
file. 

Descriptive names 
While unique file names are an essential part of the user interface, it should be possible to use 
other naming conventions. In particular, the user should be able to access a file by describing its 
qualities instead of its label (i.e. name). This descriptive naming feature allows the user to 
access a file on the basis of its content or contextual or user-specific knowledge. 

3.2. Structure or Names and the Name Server Hierarchy 

3.2.1. Hierarchical Names 

The GAFFES namespace is hierarchical. Each successive component of a name further qualifies 
or "locates" the object in the namespace. For example, 

!U.SA.!EDU!University-of-California!Berkeley!EECSICS-division!Xavier!recipesljlying-pancakes 

might be the name of the file holding a recipe of which the student named Xavier in UC Berkeley's CS 
department is particularly fond. The actual syntax used to separate components in an object's name is 
unimportant and we chose the syntax in the example simply because we are accustomed to it. What is 
important is that whatever syntax is chosen be used globally in the system. Users should not need to 
name objects differently because their physical or logical location in the file system has changed. This 
would violate our uniform naming objective. 

The name of this recipe file is location-independent in that it is unnecessary to know what 
machine stores the recipe file, or what name servers would be used to resolve the name. While the file 
name does specify the organizations to which the file is attached, it does not specify a storage device. 
No component of an object's name needs to describe the object's actual location. Instead, the name is 
passed to successive name servers based upon substrings of the name until one of the name servers 
recognizes that it stores the location information for the part of the namespace that includes the named 
object 

We chose a hierarchical namespace because it satisfies our goal of providing an easy choice of 
unambiguous (globally unique) names. A hierarchical namespace has a tree structure, and because a 
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simple path from the root to any node in a tree is unique, it is easy to choose a unique name. Users 
need only check that the last component of the name they choose is unique at the level of the hierarchy 
in the tree represented by the prefix of the name. This is inexpensive to do and does not place a severe 
burden on a user provided he is allowed to add more levels of hierarchy to his branch of the 
namespace. For this reason, we have also decided to allow arbitrary depth in the namespace. Using 
hierarchical names with arbitrary depth gives organizations and users the freedom to create sub
namespaces without affecting other organizations and users. 

3.2.2. Operations on Names 

There are three operations on file names: 

I* 
*This routine is called iteratively. 
*Given a name and a server, resolve the name 
* to the next list of name server handles, or to a file server 
*handle or list of replication server handles if the given server 
* recognizes the entire name. 
*I 
FileServer or ListOfReplicationServers or ListOfNameServers 
FindFile(server, name) 

I* 
* Add a file name to the file namespace. 
* Return success or failure. 
*I 
Status 
AddFileName(server, name) 

I* 
* Delete a file name from the file namespace. 
* Return success or failure. 
*I 
Status 
DeleteFileName(server, name) 

3.2.3. Name Resolution 

3.2.3.1. The Logical View 

Although names are hierarchical, name resolution need not be hierarchical in all cases. It will be 
hierarchical only in the most expensive and most general case. Figure 3.1 describes the most general 
case. 
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Figure 3.1 -Example or a Simple Name Server Hierarchy 

A name server is handed the name !p/ants/ftoweringlhyacinth, and, not recognizing the name, 

hands the name intact to its parent name server. If the parent name server still does not recognize the 

name, it, in tum, hands the name to its parent name server. Eventually the name makes its way up to a 

top-level name server that recognizes the first '/' component of the name. (Actually, it recognizes the 

empty name before the first '/' delimiter.) This server then knows the server (or how to find the 

server) that will recognize the !plants portion of the name and hands the name resolution responsibility 

to that server. Finally, the name comes to a server that is responsible for the !p/antslftowering section 

of the namespace and recognizes the full name lp/antsljloweringlhyacinth. This name server is able to 

find the disk server or replication server that stores the file. 

An alternative method of name resolution could require that any name be passed to a top-level 

name server at which point the name resolution process could begin. For reasons of trust and perfor

mance, we feel this is too great a restriction. In a system such as Grapevine or Clearinghouse 

[Schroeder 83] [Oppen 83], where there are only a few levels to the namespace, it is not terribly waste

ful to start name resolution from the root of the namespace tree. In a global file system, where there 

could be an arbitrary number of levels, this requirement could be very wasteful. If names are always 

passed to top-level servers to begin the chain of resolution, then name resolution will almost always 

require many steps since in a large system, most objects will be fairly deep in the namespace tree. If 

names are always passed to parent servers when unrecognized by the initial name server, then in the 

worst case any name may require a chain of resolution all the way up the tree to a top-level server and 

then down the tree until a final server claims the name. The resolution chain of the second scheme is 

potentially longer than that of the first scheme, but because we believe its worst case will not occur 

often, and because the first scheme will almost always require as many resolution steps are there are 

components in the name, we chose the second scheme. 

We believe that the worst case of the second scheme will not often occur, because users will 

tend to refer to files localized in some subtree of the namespace. Only servers handling that subtree 

need participate in name resolution for these files. Often, one server will handle a subtree of a 

namespace, and if this is the same server with which the user initiates the name resolution process, 

only that server need participate in resolving the name. Users and organizations will for the most part 
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refer to names near them in the hierarchy, perhaps only up a level or so and then down another level or 
so. We have optimized our name resolution process for this case. In the case where a user wishes to 
refer to an object far away in the namespace tree, our name resolution scheme is more wasteful. Also 
(as described below), we allow servers to pass names not just to their parent and child servers, but to 
arbitrary other servers. 

Of the designs mentioned in [Terry 85, p. 47], our design appears to be a simplified version fal
ling between the first design requiring a "metacontext" and the second decentralized design. In Terry's 
metacontext design, the resolution of names not otherwise recognized by a server must eventually 
involve a a top-level server that stores a metacontext that tells it which of the other servers will be able 
to begin the name resolution process. In the decentralized design, the information about which server 
should next participate in the resolution of a name is spread out through the servers so that there is no 
need to have "top-level" servers where storing a metacontext Our scheme has top-level servers 
through which the name resolution process may need to pass, but the information about how to reach 
those top-level servers is spread out through the servers by using a notion of parent and child servers. 
Servers pass unrecognized names to their parents and they pass further-resolved names to their chil
dren. Servers can also pass names to arbitrary other servers, as explained below, but this is not the 
default case. 

Our design also lacks the full generality of contexts in Terry's designs. Name resolution in our 
design amounts to passing the full name of an object to each successive server that recognizes some 
increased portion (usually a prefix) of the object's name. We believe enough load balancing is avail
able through splitting the responsibilities of the servers along these syntactic lines and that more gen
eral information (beyond the full name of the object) is not necessary. 

Our design also contrasts with a more restricted design where each successive name server strips 
off the portion of the name that it has recognized and hands the shortened name to the next server. We 
chose this design for two reasons. In GAFFES, there is not a one-t<H>ne mapping between servers and 
nodes in the namespace hierarchy. A name server thus needs to inspect some prefix of the full name to 
determine whether it or another server is responsible for the file. As described below, name servers 
are able to communicate with other servers far removed from them in the namespace and must be able 
to hand those other servers a full name. This flexibility allows name servers to make decisions based 
not just on syntax but also on trust and load considerations. 

There are two patterns of server communication that we could follow, an iterative method and a 
recursive, nested method. In the iterative method, a client passes a name to a nearby name server. The 
nearby name server determines what other name servers could next be talked to in order to resolve the 
name and returns this list back to the client Based upon trust, availability and performance reasons, 
the client makes a choice as to which server from this list to try next. This server in turn returns a list 
of the next servers to resolve the name further. After several iterations of this procedure, the client 
talks to a server that is able to return a disk server handle or a list of replication server handles. 

In the recursive method, each successive name server makes the decision as to which other name 
server to pass the name to, without returning any information to the client. The initial server finally 
returns the resolution of the name to the client ([Terry 85] mentions a third, transitive method. We 
rejected the transitive method because it does not deal as well with server failures and does not adapt 
as well to the use of remote procedure calls.) The iterative method allows a client to choose which
ever name servers he most trusts at each step of the name resolution process. The recursive method 
leaves trust issues up to the name servers themselves. Depending upon trust considerations, the itera
tive method of name resolution can be used for all of the steps in the name resolution process until a 
server is reached that the user trusts. At this point, the resolution process can continue in the recursive 
fashion. 

A variant of the recursive method, tentatively called the don't-care method, permits relatively 
high performance access to files which the user wishes to access in spite of his lack of trust. In the 
don't-care method, the name servers may pass the name request to any other server, regardless of 
whether that server is considered trustworthy or not. 
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We decided to use full path names rather than relative names because relative names mean dif
ferent things in different parts of the name space. This would violate our goal of providing a uniform 

namespace globally unique names. Descriptive and generic names, as described later, give a location

sensitive or context-sensitive way of naming objects. 

The name server hierarchy need not match the name space hierarchy exactly. Figure 3.2 shows 
several ways in which the name server hierarchy can differ from the syntactic hierarchy. 
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An individual user may wish to add arbitrary depth to some branch of the hierarchy, without the 

need to add new name servers, particularly if he does not anticipate much of a performance bottleneck. 

In this case, the student Xavier in the CS-division can add whatever depth of subtree he wishes for 

storing his own files and avoid naming conflicts if he gives the files names with the prefix 

/U.SA.IEDU/University-of-California/Berkeley/EECSICS-division!Xavier 

For security reasons, an organization may want to have only one name server handling a subtree 

of the hierarchy. In figure 3.2, if the kgb owns the /U.S.S.R. name server, then it has control over all 

files with the prefix /U.S.S.R., even if the files are in the Ministry-of-Culture subtree. 

If there is a part of the namespace that is heavily used and for which the necessary data to store 

is very large, several name servers can handle one node in the syntactic hierarchy. In figure 3.2, the 

amount of information to store about the "bureaucrats" node is too large for a single name server. Two 

name servers handle this syntactic node by splitting the name resolution tasks in some fashion. In this 

example, one name server recognizes names with the pattern .. .lbureaucratsl[a-m]* (all names starting 

with an 'a' through 'm'), and the other name server recognizes names with the pattern 

.. ./bureaucrats/ra-m]* (all names starting with anything except an 'a' through 'm'). 

This last example is an important feature for systems that wish to grow and shrink gracefully. In 

Grapevine, when a registry became too large, splitting the registry into pieces forced users to change 

their names. In this design, name resolution databases can be split (or combined) without the need to 

make syntactic changes to the namespace [Terry 85]. 

We also wish to allow name servers to resolve names by passing a name directly to another 

name server that isn't a parent or child name server in the hierarchy. (A parent name server is the 

server directly above the particular server in the hierarchy, and a child server is one directly below.) 

For instance, the EECS department name server could resolve a name IUSSR!kgblrecipes directly by 

handing the name to the kgb name server without resolving the name all the way up the tree. If two 

organizations trust each other and wish to communicate frequently, it is a performance advantage for 

them to set up their name servers to recognize each other directly. This sort of a "hard link" is also to 

their advantage for security reasons, if they trust each other but do not trust arbitrary higher-level name 

servers. 

3.2.3.2. The Mechanism 

Name resolution would be easy if a name server could store the locations of every single object 

in the global file system. This is not a feasible solution in such a large system. The necessary amount 

of information is far too large for one server to handle. Even if the server could store all of the infor

mation, updates to the global file system would swamp the server. It is therefore necessary to divide 

up the location information among various servers. As soon as this is done, it is necessary to define 

how servers cooperate to resolve a name of which the servers that initially see the name have an 

incomplete understanding. 

We have modeled our name resolution mechanism on a subset of the idea presented in [Terry 

85]. The patterns of name resolution described above are handled by name servers storing information 

about which other name servers they talk to. We can think of each name server recognizing or reject

ing a name based upon some arbitrary function. 

Boolean 
NameServerRecognize(name) 

In our design, the function will make its decision based upon syntactic information. In the usual case, 

a name server given a name will recognize or reject a name based on some prefix. If the name server 

stores no information about its child and parent name servers, then if it accepts a prefix of a name, it 



17 

will need to forward the name on to all of its children and wait for a response indicating that a particu
lar child has recognized the name. It is preferable that a name server store information about what its 
children name servers are likely to recognize. This saves time by avoiding the expense of handing a 
name off to all the children and waiting for a child to respond in the affirmative. A name server is 
"bound" to another name server if it knows how to address the other name server (a network address or 
port number) and also knows something about what kinds of names that other server is likely to recog
nize. A server is bound to its parent server and its child servers, and it can be bound to arbitrary other 
servers as in the case of the EECS server in Figure 3.2. 

When a local name server is handed a name that resolves to an object far away in the name 
space, it may not recognize any prefix of the name, and may not know of any server that will. If this is 
the case, it hands the name to its parent, and its parent repeats the process until a top-level server 
receives the name. If the local name server is bound to a top-level server, it could pass the name 
directly to the top-level server, but this is an option and not a requirement in our system. 

3.2.4. Naming Versions 

Unlike file replicas, the versions of a file represent distinct objects. For the user to be able to 
distinguish between the versions, they must have different names. We have chosen to name versions 
by putting a',#' after the name. For example, 

/U.SA.IEDU/University-of-California!Berkeley/EECS/CS-division/Xavier/292j/ftnal_paper .3 

might be the the third version of Xavier's Computer Science 2921 paper. The user is not required to 
specify the version number when requesting a file. If a user specifies a name without a version number 
on the end, and the file has versions, this name will be interpreted to mean the most recent version of 
the file (the version with the highest number). Also, while problems of file archiving and source code 
control are important, GAFFES was not intended to solve these problems. Therefore, more powerful 
version naming is not provided. 

This is not the only reasonable convention for the naming of versions. It could be argued that 
the versions of a file should not have separate names or that versions other than the most recent should 
be named relative to the current version. We chose to give each version a separate name to maintain 
the one-to-one relationship between the file and its name. Relative naming of versions was rejected 
because it would have meant that a file's name would change as new versions were created. Users 
desiring a more sophisticated version system could use the existing version system as a set of primi
tives from which to construct more advanced features. 

We considered naming versions by using the descriptive name (attributes) mechanism. We 
rejected this possibility because we decided that attributes should not be used to have special meaning 
to the system. Our reasons for this decision are described below, in the section on descriptive names. 

3.3. Descriptive Names 

3.3.1. Design Decisions 

It is not always convenient or intuitive for a user to refer to a file by its hierarchical name. 
Often, a user will not care precisely which file he gets access to as long as it has certain content For 
example, he may need to see some sample source code from a certain language to remind himself of a 
programming convention, but he may not care which particular file he looks at Another possibility is 
that the user will want to access files on the basis of his current context. For instance, a programmer 
maintaining programs for several different machines might have a context corresponding to each 
machine. He could use descriptive names for the files and let the context 'choose' the files for the 
machine he was currently working on. This would be particularly useful if the different sets of code 
were not being revised at the same rate, since the unique, hierarchical name of a file contains version 
information. By using descriptive names the programmer could ignore the differences in version 
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numbers for the different machines. Descriptive names also pennit a user to underspecify a file, either 
because the user doesn't know the exact description of the file, or because he wishes to inspect all files 
that match the description. 

In GAFFES, a file is given a descriptive name by attaching "attributes" to the file. An attribute is 
simply an <name, value> pair, where both the attribute and value are strings. Originally, we thought 
that certain attributes would have special meaning to the file system. Examples of possible "special
meaning" attributes are file type, owner, and alias. The decision to implement files as untyped blocks 
made the file type attribute pointless. The ownership attribute also became pointless when ownership 
was defined in terms of access rights. The final special-meaning attribute we rejected was the alias 
attribute. We thought that one way to make it easier for a user to find certain files would be to attach 
alias attributes to those files. When a normal file access attempt failed, the name service would 
automatically search the user's context for a file whose alias matched the original request This would 
have only be done for file descriptions that did not include name hierarchy information. We decided 
that enforcing this convention at the level of the name service was a bad idea, because it would at least 
double the time necessary to return from a file access failure and could be implemented at the level of 
a user's shell if so desired. Thus, the system does not attach special meaning to any attributes. 

Descriptive names have several disadvantages. A descriptive name is not likely to be unique. 
For example, there are many different random number generators in the world. If one were to attach 
the attribute <function, random number generation> to such a library routine, it would not be certain 
that that particular file would be the one the name service would find when one later requested a ran
dom number generator. This lack of uniqueness is unavoidable unless users are required to assure that 
every file has a unique set of attributes at the time of creation. Such a restriction would violate the 
underlying goals of providing descriptive names in the first place, by forcing the file's owner to modify 
the name in ways that had nothing to do with the file's purpose. 

There is also a very large set of possible attribute names that could be used. It is not reasonable 
to require every user to specify even a moderately large subset of these attributes for each new file, 
regardless of the expected lifetime of the file or the user's desire to name it descriptively. As a result 
of these two problems, GAFFES files are not required to have any attributes and no attempt is made to 
assure that a file's attributes are unique. In fact, this lack of uniqueness is considered a positive 
<name, value> pair with absolute precision. To balance these two concerns, it was decided to permit 
the use of UNIX -style regular expressions in the value field of an attribute during lookups. This allows 
the user some flexibility in attribute specification without imposing a high processing burden on the 
name service. 

3.3.2. Operations on Descriptive Names 

There are five operations which manipulate attributes: 

I* 
* Add attributes to a file. 
* Return success or failure. 
*I 
Status 
AddFileAttribute(filename, attName, attValue) 

I* 
* Delete attributes from a file. 
* Return success or failure. 
*I 
Status 
DeleteFileAttribute(filename, attName) 



/* 
* List the attributes of a file. 
*I 
ListofAttrV aluePairs 
ListAttributes(filename) 

/* 
* Find any file in the given context matching the given attributes. 
* Return empty string if no file matches. 

*I 
FileName 
FindAnyFileB y Attr (AttrV aluePairs, context) 

/* 
* Find all the files in the given context that match the given attributes. 
* Return empty list if no files match. 

*I 
FileNameList 
FindAllFilesBy Attr (AttrV aluePairs, context) 
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The first three operations are simply the standard add, delete, and list actions that would be 
expected. However, since descriptive names can map to more than one file, it is necessary to provide 

two lookup functions. The first, FindAnyFileByAttr, returns a handle for the first file matching a list of 

<attribute, value> pairs. FindAllFilesByAttr returns a list containing handles for every file which 

matches its argument. Both lookup functions take as an additional argument, a context. A context is 

actually a set of prefixes for sections of the name space that are to be searched for the file, similar to 

the PATH environment variable in UNIX. Thus, a user can make his own decision about how far to 

search, picking his own point on the performance/completeness continuum. 

3.4. Operations on Name Servers 

There are several sorts of changes that can occur in the server hierarchy. These changes are 

generally made in response to performance problems as a result of growth or organizational changes. 

A server may be added in two ways. A new server may take over a level of the syntactic hierarchy 

previously handled by a node that will become its parent. We call this "adding a child server." A 

server may instead be added to split the handling of a syntactic node of the naming hierarchy with a 

previously existing server. In this case, the new server will have the same parent as the server with 

which it splits the syntactic node. We call this "adding a sibling server." Both child and sibling servers 

may be added. Deletions of servers are similar. One complication to this description occurs when a 

child server is added (or deleted) and it itself has a child. 

In general, the addition operations are carried out by copying the relevant portions of the naming 

database to new 'ghost' servers, informing parents and children of the existence of the new servers, 

and then activating the new servers. Deletion operations are similar. The database information stored 

on the servers to be removed is copied to the servers that will handle the information after the deletion. 

The parents and children are informed of the new servers they must talk to, and the old servers are 

deleted. 

We originally thought that informing parent and child servers of additions and deletions of 

servers required a transaction. We have decided instead that the performance loss resulting from 

requiring complete consistency is too severe. Eventual consistency should be adequate. When the 

server structure changes, available parent and child servers are informed of the new servers with which 

they must communicate. The operation is not performed unless there is at least one parent and one 

child server available. Parent and child server connections are treated as hints. When previously 
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unavailable servers rejoin the system and find that servers they communicated with are non-existent, or 
that a server no longer recognizes a set of names, they ask their replicas for the new server informa
tion. In addition, we propose a method similar to that of Grapevine in which replicas make periodic 
consistency checks with each other. These consistency checks should not be too expensive as replicas 
will ordinarily be close to each other. The replications themselves will be supported by the replication 
facilities described in a separate paper. 

3.5. Summary 

We have been able to meet a number of important goals for naming and file location in 
GAFFES. We provide uniform, globally unique names that are independent of file location and ser
vices that are tolerant of hardware and software failure. The system adapts to growth by allowing 
changes to the server structure without requiring name changes. Through the use of context and 
descriptive names we provide the user with powerful name lookup facilities. 

4. Security and Protection 
The GAFFES design should support on the order of a million users who could potentially access 

any file in the system, yet the system would not be administered by a single authority. Instead, many 
mutually suspicious organizations would use the facilities of GAFFES and cooperate in its mainte
nance. Each organization participating in GAFFES would support GAFFES system software neces
sary to identify and store local files. It would also need to authenticate users from its own organization. 

Although allowing cooperation between organizations is one of the primary features of 
GAFFES, users in each organization will need to be assured that involvement in GAFFES does not 
expose them to the following security threats [Voydock 83]: 

• unauthorized release of information, 
• unauthorized modification of data, 
• denial of service. 

In order to protect against the first two threats, GAFFES must provide a means of authenticating users 
and establishing secure communication channels. We do not consider the issue of denial of service. 

We have divided the proposal for security in GAFFES into five sections. The first gives some 
background. It lists several assumptions, defines some terms used throughout the paper, and discusses 
previous work on network security. The second section enumerates the set of security guarantees 
GAFFES provides its users. These guarantees are GAFFES' security policies. A short third section 
lists the difficulties involved in implementing these policies. The fourth section of the paper describes 
the mechanisms in GAFFES designed to enforce its security policies in the face of these difficulties. A 
final section gives some conclusions. 

4.1. Background 

4.1.1. Assumptions 

• It is possible to generate public/private key pairs on demand. 
• Our protection mechanisms are only as secure as public key cryptography. 
• DES or other private key encryption hardware is available. 
• The network subsystem is susceptible to packet smashing, wire tapping, and replay. 
• All objects in the global file system (files, name servers, replication servers, etc) have unique net

work addresses. The network address can be interpreted by the communication subsystem to allow 
delivery of messages to the object Most network addresses will last only for the lifetime of the 
object manager's process. 

• Where necessary, security provisions take precedence over performance concerns. 
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4.1.2. Definitions 

4.1.2.1. Users and Roles 

Users are humans who use the file system and the processes that exist on their behalf. A role 
[Birrell 86] is an abstract entity which has pennission to do certain operations on a file. Associating 

rights with roles instead of users allows file access rights to be granted to logical users instead of 
GAFFES system accounts. For example, one user may use roles /NewsReader, /SystemAdministra
torUCBArpa, {Berkeley/user/ferry, and /GAFFES_Programmer. Some of these roles may be shared 

with other users. A role may be shared with a partially-trusted server (such as a printer) without 
potentially compromising the other rights possessed by the user. Damage done due to a security 

breach is limited to the subset of a user's rights owned by the compromised role. 

Users acquire (or "take on") roles in order to exercise the rights associated with that role. Just 

as access to files requires rights, acquiring roles requires rights; users must use one role to take on 

another. At login, a user is given the permanent user-role unique to that user. Since presenting a local 

kernel with a password is a necessary component of beginning a login session, a password is the ulti
mate key to a user's rights. 

Roles and their implementation are discussed in greater detail in a later section. 

4.1.2.2. Owner 

An access right is the pennission to do a particular operation on a particular file. Access rights 
to an object are granted by the owner of the object. By definition, the owner is the role (or roles) given 

the right to do the ChangeAccessRights operation on the object. Similarly, roles have owners who 

grant the right to acquire the role. The creator of a file or role is its first owner. 

4.1.2.3. Trust 

In GAFFES, all services have owners. The owner is a role representing a user (or organization) 

who guarantees the semantics of the operations defined on the service. A trust is the assumption that a 
potential user of the service makes about the validity of the owner's guarantee. Since operations are 

invoked by roles, each role must have established for it a set of trusts acceptable for the role. 

A belief system of a role is a set of statements. With respect to this role, every statement in the 

belief system is a true assertion. GAFFES expects roles to create their belief systems using external 

mechanisms. Further, a role can place an arbitrary set of statements in the belief system. GAFFES 
will guarantee only that actions carried out on behalf of a role are consistent with the beliefs expressed 
in its belief system. 

In GAFFES belief systems, we place statements of trust. Individual trusts are represented in a 
belief system as triples containing: 

• The owner of a service, 
• An operation on this service, 
• A set of constraints on the parameters and result values acceptable for this operation. 

An operation is invoked on a server owned by the listed owner only if the parameters satisfy the given 

constraints. A role believes in the results only if the operation is invoked in a manner consistent with 

its belief system, and the results also satisfy the stated constraints. GAFFES clients (and services) use 

belief systems when choosing a service on which to invoke an operation. 

For an example of this notation, consider the situation where a role trusts the Berkeley name ser

vice to resolve names of objects at Berkeley correctly. This trust is represented in the role's belief sys

tem as: 

(IEDU/Berkeley/Name_Serviceladmin, resolve_name, names beginning IEDU/Berkeley) 
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Note that this formalization of trust allows us to express such subtleties as the fact that a name service 

may be trusted to resolve names in one part of the name space and no others, or the fact that a name 

service may not be trusted for some operations. The formulation and use of belief systems is discussed 

more fully in a later section. 

4.1.3. Previous Work 

An early paper in this field, [Needham 78], introduced the concept of authentication servers and 

presented several schemes for authenticating principals using public and private key encryption tech

niques. The algorithms described, however, assume that authentication servers are trusted globally. 

Since the GAFFES system cannot include universally-trusted components, the algorithms proposed are 

unsuitable for our design. 

[Birrell 86] and [Lampson 86] describe work being done at DEC SRC for trusted authentication 

in systems without global trust Our notion of roles arises from their work. These papers are also our 

motivation in using a hierarchical role name space, with non-hierarchical authentication paths. 

The work at DEC SRC is based on a hierarchy of secure channels between authentication 

servers. There are pairwise secret keys between principals at either end of a secure channel. Secure 

communication is established by composing these channels to form a trusted path. Our scheme differs 

in that it uses public keys for authentication. Further, our formalization of trust is different from the 

model they describe. We have introduced the concept of a belief system, which the DEC SRC model 

lacks. 

At UC Berkeley, the DASH project [Anderson 87] is currently investigating issues in the design 

of distributed systems with non-global trusts. A formal statement of trust and theorems using this for

malism are described in [Rangan 87b]. However, their notions of trust differ from ours in several 

respects, particularly from our idea of trusts as linked to guarantees. 

Using cached public keys as hints is based on the material in [Terry 87]. Maintaining loose con

sistency among public key caches uses an idea of a "time to live" as described in [Terry 84]. 

Traditional network security problems are discussed in [Denning 79]. Some solutions are pro

posed in [Taylor 85] as well as [Mills 87]. The ITC distributed file system [Satyanarayanan 85] uses 

access list protection and a form of group access rights. Their groups are similar to our roles. 

4.2. Policies 

GAFFES provides the user a set of security/protection guarantees about the file system. These 

guarantees will be stated in the form of policies regarding security/protection issues. The policies are 

not meant to imply the use of any particular mechanisms in their implementation. Oearly separating 

policies from mechanisms gives us a vehicle for discussing the function of GAFFES security 

separately from the mechanisms available to implement it. This separation also gives us a means of 

evaluating alternative mechanisms. 

• Every file has at least one owning role. An owning role is a role that has access to the operation that 

changes access rights to the file. Clearly, a role with this right may use it to acquire any other 

rights to the file as well. 
• Roles also have owners. The owner of a role determines the roles that may use that role to do 

operations on files. GAFFES does not guarantee that these roles will not surreptitiously or acciden

tally distribute access to the role once it is granted them. 
• Our central protection guarantee for GAFFES is that a file will not be accessed other than in a 

manner authorized by the owner of the file. 
• The multiple domain structure of GAFFES should not result in the violation of the above policies. 

In particular, the presence of untrusted domains in the system should not affect a file's security. 

4.3. Problems 

Given these policies and the environment described above, the implementors of GAFFES must 

deal with these problems : 



(1) How is unauthorized access to a file prevented? 

(2) How is a role implemented ? What is the user interface to a role ? 

(3) How should secure communication links be established? 
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(4) How can caching of keys improve performance without making security violations harder to 
prevent/detect? 

(5) What rights do the operations invoked by triggers have? 

(6) How are roles authenticated between domains? 

(7) How can users be sure the names of roles are resolved to the correct public and private keys? 

Answers to these and other interesting questions are described in the section that follows. 

4.4. Mechanisms 

4.4.1. Overview or the Implementation or GAFFES 

The security mechanisms described here depend on four components of the global active file 
system: 

The hierarchical name service 
The storage service 
The key-caching service 

Note that GAFFES does not use key distribution servers or authentication servers. The actions per

formed by these traditional security services have been subsumed in our design by the components 
listed above. 

The security-related functions performed by these services are 

1) Role creation 
2) Role authentication 
3) Public key revocation 
4) Use of belief systems for trusted operations 
5) Public key caching 

4.4.1.1. Name Service 

As far as the present discussion is concerned, "the" name service must be thought of as a col

lection of name services. Each organization supports a name service capable of resolving some, but 
not all of the names of objects in the global file system. From any given location, the resolution of 

some names will require the cooperation of several name services. The details of the individual name 

services are described elsewhere. Here we view a name service as a black box that supports two 

operations: recursive name resolution and iterative name resolution. The first, when invoked, returns 
the network address and public key bound to a name. The second, returns the owner, public key, and 
address of a name server that can resolve the name. The reason for this distinction is security-related 

and explained in a section below. 

An important point about name servers is that they communicate with each other using secure 
channels. Thus communications between components of the name service are secure to the extent that 

all messages are encrypted using a one time conversation key. 

4.4.1.2. File Manager 

A file manager is the server that actually controls the files; for unreplicated files it is a disk 

server, and for replicated files it is a replication server. We require the file manager to authenticate 

roles and check permissions for the files it maintains. Details of this are described in a later section. 

File managers have public/private key pairs and network addresses. Public key and network 
address are assumed to be registered with the name service by human intervention or some other 
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measure outside of normal GAFFES operation. Changing public key may be accomplished with a 

name server operation so long as the old key has not been compromised. The private key of a file 

manager is stored in some secure manner on the disk it is managing. 

4.4.1.3. Cache Manager 

The cache manager maintains a cache of public keys that have been resolved at that site. 

Resolving public keys is time consuming. Hence, in the interests of performance and availability, it is 

useful to maintain a cache of public keys on a per site basis. We describe the nature of our cache in a 

section below. 

In addition to the cache of public keys that is maintained per site, we also expect public and 

private keys to be cached in main memory on a per role basis. Routines in the client library are respon

sible for maintaining this cache. By maintainii:tg a hierarchy of caches, we expect to improve perfor

mance. 

4.4.1.4. Client Library 

We do not expect a user to directly invoke the above services. Instead, GAFFES will provide a 

library of routines as an interface to GAFFES (not unlike the UNIX standard 1/0 library). The library 

routines can be thought of as existing at a level above the cache manager, the name service, and the 

file manager. The client library manages interactions between these entities as shown in the following 

figure. 
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The library must be able to tell which roles should be used to access which files. To do so, it 

maintains mappings from file name to name of role used to access file in a definition file (similar to 

.cshrc in UNIX). The library routines read the definition file and automatically acquire the correct role 

to access a file. Since groups of files accessed by the same role will probably be near each other in the 

name space, the definition file can actually contain prefixes to file names instead of complete file 

names. Using prefix mappings will prevent the definition file from growing too large. Most files in the 

global file system will be accessible only if unprotected so a mapping from "f' to user-role should 

suffice as a default. 
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4.4.2. Implementation of Roles 

Public key cryptography serves as the basis for security in GAFFES. A public/private key pair 

is associated with each role. Although users and file managers will cache the private and public keys 

they use, each role has a file suite associated with it which stores the authoritative key pair for that 

role. 

We prefer public key to secret key cryptography because public keys are more readily cached 

and replicated. There are no penalties for accidentally divulging a public key, in contrast to the severe 

penalty on loss of a secret key. In addition, a role's private key authenticates it to anyone who has 

access to a reliable public key. This property is useful in a global system. Finally, in order to acquire 

a secret key, everyone along the path transferring the secret key has to be trusted not to misuse it This 

is far more trust than in a public key scheme, where a propagating node has to be trusted only to the 

extent that the public key propagated has not been changed. An intermediate node cannot misuse the 

public key in itself [Rangan 87a]. 

The file suite for each role consists of two files-- one containing the role's public key and one 

containing its private key. The read operation on the public key file is not protected, However, only 

users (in roles) allowed to take on this role may read the private key file. Only the owner of the role 

may write the key files. 

Roles are created by a user program "CreateRole (owner rolename)" that generates a key pair, 

establishes both files, and checks that the name given the role is unique. By convention, private key 

files have the extension ".prv"; public key files are identical to the role name. Private key files also 

store the belief system of the role. Anyone can create a role. Since new roles presumably haven't been 

given any rights, there is no reason to protect this operation. Roles may be deleted by their owners. 

Changing the keys stored by a role is done by a similar program. Only an owner of the key file 

may change the keys. This program uses a transaction mechanism to make sure that all versions of the 

role files are consistent 

Implementing key storage as a file suite allows authentication servers to be replicated through 

GAFFES replication service, named through the GAFFES name service, and protected by the 

GAFFES file protection mechanism. An important implication of this design is that role names are 
part of the same name space as file names and are guaranteed unique by the restrictions of the 

GAFFES naming hierarchy. This implication is discussed in detail in a later section on trust and 

trusted authentication. 

4.4.3. Standard Network Security Problems 

Many network security problems such as wire tapping, packet replay and packet smashing have 

been extensively studied in [Taylor 85]. Solutions to these problems are well documented. Essentially, 

they involve encryption of data put on exposed wires and placing sequence numbers or time stamps on 

messages in order to provide a secure window (for example the Sun RPC protocol). We refer the 

reader to [Taylor 85], [Denning 79], and [Needham 78] for further discussion regarding these prob

lems and their resolution. 

The algorithms normally used for security in distributed systems assume that there is a way that 

two communicating principals can get hold of a shared secret key. We will call this the conversation 
key. If both role and file manager have well-known public keys, a conversation key is easy to arrange. 

The requester authorizes the original request for file access with a digital signature generated by its 

private key and seals it in the public key of the file manager. The reply contains a randomly-generated 

conversation key, encrypted by the public key of the requesting role, and authenticated by the file 

manager's digital signature. Continued communications between the file manager and the requester 

can use this conversation key. Therefore, once the two communicating principals know each other's 

public keys, a conversation key and solutions to the classical problems immediately follow. 

Unfortunately, in a distributed system without global trust, obtaining the correct public keys for 

a role or a file is not necessarily easy. Consider the following example- suppose file manager for file 
A, (henceforth called A), wants to authenticate request from a user claiming to have taken on role B. 
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The requester's digital signature should be ((operation) private_b)public_a); A needs to know the pub

lic key of B in order to decipher the signature. A must read the public key of B from the authentica
tion server administering B. 

While resolving the role name, A could accidentally do an operation on a malicious server 

(authentication or name). That malicious server could substitute (a path to) the public key of one of its 
evil henchlings instead of the real key of B. Assuming that B had some access privileges to file A, 

these can now be usurped by the impostor. This would enable file A to be accessed by an unauthorized 

role, which voids our guarantee. 

The problem here is that public keys are only as secure as the method used to obtain them. In a 
system like GAFFES, users may only know a few servers that can be relied upon to find authentic pub

lic keys. By insuring that the process of acquiring public keys does not involve servers outside of the 

user's trust domain, GAFFES can guarantee those users that keys are authentic as long as the user's 

trusts are warranted. Informally, a trust domain is a set of name servers whose operations a role trusts. 

We will discuss trusted authentication more completely below. 

GAFFES expects the communication lines to be insecure and susceptible to wire tapping, packet 

smashing etc. Hence all communications between principals must use a conversation key to encrypt 
messages. Each principal must arrange a conversation key for each other principal that it wishes to 

communicate with. This key is easy to establish if the public key of the other 

4.4.4. Implementation of The Client Library 

Users interact with the file system through a client library similar to the standard 1/0 library in 
UNIX. The client library includes RPC stub routines to package the user's request into the messages 

that the file manager actually receives. Those messages must contain digital signatures encrypted with 

the private key of a role and the public key of the file manager. Library routines go through the proto

cols necessary to obtain public keys for file managers and to assume roles for users. Several of the 
more important library routines are discussed next. 

One of the major routines present in the client library is Find.PublicKey. Given a role name, this 
routine returns the public key for a role in a manner consistent with the belief system of the invoking 
role (henceforth called "trusted manner"). 

The FindPublicKey routine first contacts the local cache in order to check if the public key is 
available locally. If so, the cache returns the key, along with the time it was acquired and the path(s) 

used to acquire it. The routine then reads in the belief system of the role on whose behalf it is doing 

the role name resolution. It uses the belief system to decide if the cached value is acceptable. If it is, 

the routine is done. Otherwise, the name server is asked to determine (in a trusted manner) the address 

and public key of the manager of a public key file. Sending a read request to the file manager of the 

public key file allows the client library routine to obtain the desired public key. The cache is subse

quently updated to reflect a new path for the public key, or at least a new time of acquisition. 

We next describe the file open request. This is similar in spirit to other file operations (read, 

write, close, seek etc. ) and in the interest of brevity, we will discuss only this operation. 

To open a file, the name of the file is first presented to the name service. This returns the location 

(network address) and public key of the file manager responsible for this file. To open the file the rou
tine must send the file manager a request, authenticating it with the digital signature of a role that is 

used to access this file. The role to be used is found from the lookup table. The private key of the role 

is now obtained by doing a read from the private key file of that role. (A read request is sent to the file 

manager for the private key file, authenticating the request with the private key of the current role). 

Finally, the open request is encrypted using the private key, and this is sent off to the file manager of 

the file. The file manager authenticates the request and verifies that the role has correct access rights. If 
this is satisfied, it opens the file. 



27 

4.4.5. Access Lists 

The file has a control block area in which to store access lists. As mentioned previously, file 

owners create and modify these access lists with the operation ChangeAccessRighls(ftlename, mode(= 

add, delete), rolename). Any access list can contain the role "unprotected" which turns off the access 

control mechanism for an operation. We chose to implement access control with access lists instead of 
capabilities for several reasons: 

(1) Revocation of widely distributed capabilities would be difficult and extremely expensive. 

(2) Access list protection is much more convenient for users than capability-based protection. 
Users will usually have fewer roles than capabilities so they are easier to keep track of. 

(3) One major disadvantage of access list protection schemes in large systems is that the lists 
themselves may become large. Because of the existence of roles to specify group rights, we 
think that this can be controlled. Instead of giving access to particular individuals, owners of 
widely-accessed files will find it convenient specify groups of users in access lists. The group 
role owner, then, helps manage access to the file. H necessary, additional roles could even be 
created expressly for the purpose of shortening the access lists of popular files. There is obvi
ously a tradeoff here between the number of roles a user must maintain and the size of access 
lists. 

(4) The CPU overhead in checking an access list is not substantial; the check is only a pattern 
match. As CPU speeds increase, we feel that CPU overhead will not be a significant factor in 
using access lists. 

(5) Finally, we can also take advantage of classifying roles into sets such as group, 
within_organization, outsider etc. as in UNIX. Thus, checking the access list will just be a 
matter of finding in which class a role lies (this could be syntactic), and a lookup in a small 
access list that contained permissions for a class. UNIX gets by with just nine bits. We do not 
expect to need much more 

4.4.6. Caching Public Keys in Cache Managers 

Resolving the names of roles to public keys is a complicated operation. We would like to save 

public keys in a cache once they have been acquired in order to avoid the expense of reacquiring them 

on next use. Keys are small and most applications won't require secure communication between mil

lions of nodes, so we do not consider the size of the cache to be a limiting factor. Maintaining con
sistency, however, is still a problem since a remote role may change its public key arbitrarily. In addi

tion, there is the problem that if the cache has an old key, and the key is compromised, during the time 

that the cache retains the old key, it cannot guarantee authentication. 

4.4.6.1. Structure of Cache Manager 

Probably, each site (machine) will maintain its own cache manager. Physically, the cache will 
be a series of entries of the form: 

Rolename, 
public key, 
time of acquisition, 
(trusted path used to acquire key) , 
(roles currently accepting the key), 

where the braces denote a set of items. The time of acquisition field is for calculating whether the 
cache entry is valid according to a particular role's belief system. A trust concerning CacheLookup 

operations may specify a maximum acceptable age for cached keys in the "parameter limitations" 
field of its entry in the belief system. 

Each public key in the cache is acquired through a sequence of iterative and recursive resolve
name calls to the name server, depending upon the belief system of the role that resolved the name to 

the public key. In order for some other role to rely on the key, it is necessary that the trusts used to 
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obtain the public key be consistent with the belief system of the other role. Thus, when the cache 

returns the public key for a role, it should also return the name servers that have been trusted to obtain 

the key. We call this the 'trusted path'. If the cache has the public key for a role and the path used to 

obtain it is not a trusted path according to the role that requires the key, then the name has to resolved 

once again according to that role's belief system. If the result obtained is the same as the public key 

already in the cache, the new path, as well as the role name is added to the set maintained in the cache. 

The idea is that if 

a role whose trusted path lies in one of the paths maintained in the cache 

or 

a role for whom the public key has been obtained already using its trusted path 

then the cache entry can be used directly. Since we expect public keys to be long lived, we hope that 

the overheads that we incur in maintaining all this elaborate context will help in quick resolution of 

public keys in the average case. 

4.4.6.2. Revocation and the Consistency or Caches 

Assume for the moment that revocation is not a problem. We solve the consistency problem by 

treating the cache as a cache of hints. Verifying the hint is easy, because if a file manager is unable to 

decipher a digital signature, chances are that the hint is wrong (though it may be someone masquerad

ing). To regain the correct public key, it has to repeat the role name resolution process. 

Let us now consider revocation. Suppose a role discovers to its horror that its private key has 

been compromised, and so has to change the public key/private key pair. A server that has cached the 

old private key might continue to use that key indefinitely. Security might remain compromised at 

these servers despite the change of key. 

To handle this problem, we use the idea of a time to live for a cached public key. A cached key 

that has lived past this time is automatically invalidated. The idea is that keys used by resources need

ing high security should be reacquired every time a message is received. For file managers with lesser 

security requirements the time to live can be longer. In some cases, the invalidation of the cache entry 

will take place due to the receipt of an undecipherable signature rather than due to the time to live. 

Critical applications may need to send out explicit cache invalidations. Fortunately, a normal 

file operation whose signature is generated by the new key will invalidate a cache's old key. If, in the 

course of authenticating an operation, a file manager discovers that a cached public key does not match 

the requester's signature, the file manager will check the role's public key file to make sure the key has 

not changed. A role administrator (or any user) who wants to invalidate the old key may store a list 

containing file managers of interest who might have cached the old key. Sending dummy file requests 

to these file managers will cause cache invalidations; thus, explicit revocation can be handled using 

exactly the same mechanism as is used for updating a wrong hint 

4.4.7. The Proxy Problem 

When a role requests a file operation, the operation may set off a trigger. The trigger may need 

to carry out other file operations and will need access rights for those operations. Since these opera

tions are carried out on behalf of the role who initiated the trigger in the first place, the trigger should 

able to assume the rights of this role. The proxy problem is to design a mechanism that allows this to 

happen. 

Three entities interact in the proxy problem - the right holder , the right wielder , and the right 
verifier. The right holder has the right to some file operation and is authenticated by the right verifier. 

In our case, the right verifier is the file manager of the active file. The proxy problem arises because 

we wish to allow a right wielder, who is different from the right holder, to be authenticated at the right 

verifier. Having established this terminology, we are now in a position to discuss some solutions. 

The trivial way of solving the proxy problem is for the wielder to acquire the private key of the 

holder role. However, a security conscious invoker could not do file operations on files whose owner 
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may introduce a malicious trigger. Giving the wielder the holder's private key would allow the 

wielder to misuse the holder's rights at other verifiers. (This is analogous to giving away one's credit 

card number to a trusted server). We feel that this solution forces holders to put an unreasonable 

amount. of trust in the wielder. Further, revoking such a trust is potentially troublesome since it 
involves a key change for the holder. 

Another possibility is for the user to supply a token when invoking an operation that has triggers. 

A token is a binding of a particular holder and wielder to a verifier. In order to authenticate a wielder, 

we will need to associate a role with it In our case, the trigger of an active file is the wielder, and 

hence will need to be associated with a role. This recognizes the fact that a trigger can carry out cer

tain operations, and hence has certain rights to these operations. A role encapsulates the rights owned 

by the trigger. It also allows the trigger to be authenticated. 

Tokens can be generated by using the private key of the holder to encrypt the name of the 

wielder together with the name of the verifier. Since the verifier and wielder are bound to the token, 

the token cannot neither be transferred to another wielder, nor used at some other verifier. Adding a 

time to live field to the token, would limit rights given the wielder to a time interval. This time to live 

field can be replaced by a count of the number of times the wielder may exercise its rights (an invoca

tion count), if the verifier is prepared to maintain additional state. 

Given a token, the verifier must decrypt the token with the public key of the holder. Presumably, 

it will be told who this is by the wielder. The verifier then authenticates the wielder by the digital sig

nature of the wielder in the operation request. Having checked the credentials of the holder and 

wielder, it verifies that the time to live (or invocation count) is valid. Once these tests are passed, the 

verifier can correctly carry out the desired operation. 

The major problem with this method is that it requires that the holder be aware of every verifier 

that the wielder will use. This means that the user of a file will need to know what subsequent opera

tions are invoked by every trigger on the file. This prohibits any transparency of triggers and limits 

modularity. A modification to a trigger (by adding calls to other verifiers, say) may involve changes 

throughout the system. This is unacceptable. 

One can regain transparency by not binding the verifier in the token. This means that the holder 

can use the token for any verifier where the holder has access. This may be tolerable if the time to live 

can be fine tuned to permit a limited operational capability. 

If the token lacks even the wielder binding, then we need not associate triggers with roles. 

However, this means that the token can be passed around to other wielders. Again, the time to live may 

provide an optimistic access control. 

Another solution is for holders to create a very restricted role whose private key is passed to a 

wielder as a parameter, along with a time to live. (This can be done by encrypting the current time 

plus the time to live with the private key of the restricted role). The wielder may misuse the private 

key, but since the rights associated with the role are so limited, the extent of possible harm is con

tained. 

Finally, the solution we prefer is to embed a role with a trigger. All files to which the trigger 

should be granted access are asked to add the trigger's role to their access list. For example, let us 

assume that a print spooler is activated if the spool file is written on. That is, the write operation of the 

spool file triggers off the spooler. If the spooler need access to some files in the writer's directory, then 

the files that will need to be accessed add the trigger's role to their access list This solution is clean in 

that trigger rights are well defined, and can be easily revoked. The private key associated with the 

trigger has to be protected. This may be stored in an area accessible only to the file manager and sup

plied to the trigger on demand. The invoker of the trigger has to trust that the rights granted to the 

trigger are not misused. 

Access to embedded references causes a similar problem. In most cases, the right holder must 

generate the request to open, read, or write the embedded reference file with his or her own permis

sions -- not those of the file manager (who is the wielder in this case). Fortunately, these additional 

operations may be handled in the client library. If a read or write operation comes upon an embedded 
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reference in a file, the file manager returns to the client library. The return parameters of the operation 
direct the library routine to continue the operation invocation on the embedded reference instead. This 
process can continue recursively through levels of embedded references. Embedded references will 
cause some performance degradation since the extra file operations will cause extra RPCs. These 
RPCs, however, will be hidden in the library, so simple clients will not notice the presence of embed
ded references. 

Note that the methods used to resolve embedded references will not help simplify security in 
trigger-initiated operations. The file containing the embedded reference is not a right wielder. The file 
manager does not need to invoke an operation on the referenced file or see the results of the operation. 
On the other hand, if a trigger initiated a read operation, the data would be delivered to the trigger 
directly. Similarly, on a write, it would have to be trusted to supply the data. 

4.4.8. Trust and Trusted Authentication 

4.4.8.1. Implications of a Multiple Organization Distributed System 

In a system administered by a single organization, a service can be considered to provide identi
cal semantics everywhere the service is offered. Since GAFFES is administered cooperatively by 
organizations with different needs and different standards, the "same" service offered by two dif
ferent organizations may have slightly different characteristics. The general interfaces will be the 
same throughout the system, e.g. name services everywhere will support the same set of operations; 
the operations will do roughly the same things. However, the quality of the instances of a service sup
ported by different organizations may vary. 

For example, services may vary in: 

(1) speed. The hardware supporting one instance of a service may be faster than another. The 
speed of a communication link from a particular client to some service instances will vary. 

(2) compatibility. Different organizations may have different versions of the service software. 

(3) reliability. The service might have different implementations at different sites. This implies 
some sites could be untrustworthy because of bugs in their software. Others might simply cut 
comers for the sake of speed or expense. 

(4) security. On-site security mechanisms might be less strict at some organizations than at others. 
Some systems might be easier to compromise than others. 

(5) trusts. The machines supporting a service may be physically secure, but the service still 
depend on data from the file manager of a neighbor some clients consider insecure. 

(6) costs. It is conceivable that services charge their clients. Some (faster or more secure) would 
be more expensive than others. 

In short, a uniform service interface allows access to a spectrum of service instances that differ some
what in the reliability and expense of the service provided. We view this as desirable. Different appli
cations will require (and be willing to pay for) different degrees of reliability from the service. Since, 
throughout GAFFES, the service interface is the same, client organizations can shop around for 
instances of services to suite their current needs. 

The definition of trust described earlier lends itself to this kind of environment. Each service has 
an owner who asserts a place in the spectrum of service quality through a guarantee. Potential clients 
of services assess the guarantees and the integrity of owners before determining which services are 
reliable. Clients (aided by software) use these assessments to generate coherent belief systems. The 
intangible issues in trust, describing and assessing guarantees, are outside of the scope of GAFFES and 
handled by human beings. Belief systems, listing what operations are acceptable under what cir
cumstances, are simple enough to be used by software. 

Clearly, roles could require arbitrarily large and complex belief systems, but, fortunately, most 
useful trusts can be expressed compactly. Related beliefs could be grouped into a single statement by 
wildcards. Also, we think most trusts will be determined at an organizational level and shared by all 
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roles administered by the organization. Individual roles may have several more trusts than their organ
izational belief system, or fewer, but most of the role's belief system would be represented by implicit 
reference to the shared organizational belief system. For example, if a a user delivers all mail to the 
departmental mail server, he or she implicitly uses all of its trusts. The mail server may have to use a 
complex system of trusts to decide how to route a message, but the user's belief statement has only one 
statement concerning the mail delivery operation. 

Formally, a belief system is a series of triples-- (owner, operation, acceptable parameters}. 
(Belief systems could actually be implemented as relational data bases.) Before invoking a remote 
operation on behalf of a role, the client library or a service will use the data base to map an (operation, 
set of parameter values) pair to a list of (guarantor, condition) pairs. A guarantor is a reference to a 
trusted service; conditions are limitations on valid invocation results. 

Guarantors fall into several classes: "meta-guarantors," owners, any-service-at-all, or no
service-at-all. A meta-guarantor is a (network address, public key) pair that is assumed a priori to lead 
to an acceptable server. Meta-guarantors are established by means outside of the GAFFES system. 
They are the necessary ''hard'' links to gateways, local name servers, and file servers that bootstrap 
the security mechanism. The addresses and public keys of services other than meta-guarantors will be 
determined indirectly (through a name service or a reference by a server related to the service 
requested). These indirect references will include the owner of the referenced service so the invoker 
may check the service against its belief system. A service address received through an indirect refer
ence is valid if the owner, or any-service-at-all is listed as a guarantor in the referees belief system. 

Most of the widely-used services supported by GAFFES will have to be partitioned or otherwise 
distributed. Invoking an operation on a distributed service might involve remote operations on servers 
in several different organizations. The choice of which, if any, of these servers to invoke must be made 
with respect to some belief system. If these indirect invocations were made by the service that the 
client invoked originally, that service would either need to have access to its invoker's belief system or 
use some other belief system (presumably that of the owner of the service). It would be impractical 
for an invoker to ship its belief system in the invocation, but forcing clients to accept the service's 
beliefs would severely limit the trusts available to some applications. 

Our solution to this problem is to have services support a "iterative" and "recursive" opera
tions. The invoked object completes an iterative operation only if it can do so using information 
obtained locally. If not, the operation returns enough information about other remote services (owner, 
address, and public key) that the invoker may continue the operation using the service of its choice. 

4.4.8.2. Combining Iterative and Recursive Operations 

The GAFFES collective name service must support both iterative and recursive operations. 
When a high level service (IEDU) cannot resolve a name, it usually knows of several lower level name 
services (IEDU/California/Berkeley, /EDU/Califomia/Stanford) that can complete the resolution. 
Choosing one of these services to complete the resolution must be done on the basis of some role's 
belief system. If the original name service (IEDU) were invoked through the recursive resolve_name 
operation, it would choose a lower level name service based on the belief system of it's owner. If the 
higher level name service were invoked iteratively, the resolve_name operation would return an 
indirect reference (address, public key, and owner) to the remote name services. The client, in this 
case, would use its belief system to choose one of these name services for a second invocation. 

Iterative operations allow clients of cooperatively-administered distributed services to use their 
own trust relationships to generate trusted paths through the services. At each point in the path, the 
client decides which instance of the required service is acceptable to it and invokes another iterative 
operation at that service. At some point in the trusted path, the client will come to a service that it 
trusts enough to call using a recursive operation. Since the process of iterating through partially 
trusted services is expensive, clients will probably cache trusted paths to end services. Using timeouts 
as conditions in the belief systems will help the client's services make decisions about how to tradeoff 
performance versus security in the cache. 
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4.4.8.3. Trusted Authentication and Iterative Name Resolution 

Access lists must refer to roles indirectly, through names, instead of directly by public key. It is 
convenient to have role names reside in the hierarchical file name space so that the GAFFES need not 
implement a parallel name service for the sake of roles. However, this convenience should not 
compromise security by forcing a particular service to trust its parent in the name space. Fortunately, 
while name assignment must follow the hierarchical organization, resolution of a name (key or 
address) need not By using hard linlcs (in the form of meta-guarantors) to connect disjoint subtrees of 
the name space, a role can build up a set of relative name resolution paths which skip untrusted parts 
of the name space. 

Let us consider an example. The tree below represents a section of the naming hierarchy. Each 
of the nodes is an authentication or naming server. 

A 

B c 

D E F G 

If authentication were hierarchical, then D would have to trust B, A and C in order to get the 
public key of F. However, in our scheme, B may maintain a soft link to F of the form (NC/F, public 
key for F). If D trusts B to always return a correct public key, but not A or C , then a call to B to deter
mine the public key ofF would return a resolved value without going through an untrusted server. 

Relative name resolution could introduce hidden security violations in some cases. The 
presumption that the hierarchical name space insures unique names isn't strictly true. This presumption 
implies that a node in the hierarchy must be trusted to insure that all the nodes under it are named in a 
unique fashion. A malicious node may indeed create a spurious node under it that has the same name 
as some other node. As long as name resolution is relative, this will not have any affect on users that 
do not trust the malicious parent node. If the parent node is not trusted, it is not in the set of servers 
used to resolve role names during the authentication process. However, passing a name between users 
creates a potential security violation since, although the name of an object looks the same to both 
users, they may use different relative paths to resolve the name. 

4.4.9. Summary 

To recapitulate, the GAFFES authentication and security scheme associates file access rights 
with roles; users in roles invoke operations on files. The GAFFES security mechanism must prevent 
users without authorized roles from carrying out operations on file objects. To enforce this, GAFFES 
must make sure that (1) the role has the correct access rights and (2) every invoking role is authenti
cated. 

Validating access rights is trivial, it means merely checking a list of authorized roles before 
allowing the operation. GAFFES authenticates roles with a system of public keys. After the request is 
authenticated, the requester and a file object establish a conversation key. With it, they may continue 
file operations using standard network security techniques-- encryption of text, windowing to prevent 
replay etc. 

The difficulty of public-key-based authentication lies in obtaining the correct public key for a 
role. To map the name of a role to a public key in a trusted manner, a GAFFES file server must estab
lish a path to the key holder that does not depend on untrusted servers. By using iterative operations 
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and choosing the path based on trusts specified in a belief system, the file server can generate such a 

path-- even if it requires the participation of partially trusted servers. Once in possession of a public 

key. it is a straightforward task to authenticate the role by its digital signature. 

4.5. Concluding Remarks on Security 

Our formalization of trust as statements in a belief system is a new idea We think that it pro

vides a useful framework in which to discuss issues regarding systems without global trust Our use of 

this formalization in our design shows its utility in the design process. 

We think that associating access rights with roles is a good idea. Partitioning a user's rights into 

logical units contains the damage due to a security leak. Because roles provide an extra level of 

indirection between the user and the system, we are able to gain the standard benefits of indirection 

such as sharing, easy revocation and added flexibility. 

Basing security on public keys seems to be a good decision. Public keys allow a clean authenti

cation interface, and delimit trust in the system. Systems that use secret keys need more extensive trust 

relationships. 

Triggers are a potential security problem. Since they act on behalf of a role in hidden ways, it is 

much harder to keep them in check. We feel that in a system without global trust, users should avoid 

operating on a file outside of the organization they belong to if the file uses triggers. 

In conclusion, the design of security in GAFFES shows it is possible to build a distributed sys

tem in which all system components are not assumed reliable or trustworthy. 

5. Replication and Caching 

Replication of files in a distributed system has the primary goals of supporting high file availa

bility and improved performance of heavily-used files. The design of GAFFES requires both of these 

features to support its use as a general purpose information exchange system. The replication service 

proposed in this section is designed to give file owners control over the availability of their files and 

file users control over the performance of the files they use. The replication and caching section is 

divided into several subsections. The first defines the replication service goals. The second states 

several assumptions. The third defines the replication service model. The fourth provides specific 

details of the replication service. The fifth describes some alternate mechanisms. The sixth suggests 

some unanswered questions and sources of future work, and the last summarizes this section. 

5.1. Replication Service Goals 

The replication service model we propose for GAFFES is intended to support client-selectable 

levels of file availability and file access performance. Naming transparency will be supported to hide 

the issues of replication naming. The first two goals are related and conflicting. Availability is sup

ported through consistent replication of a particular file in multiple locations. No performance 

assumptions are made. High performance is attained by caching files on machines local to the source 

of the file request. Consistency guarantees are necessarily relaxed. Transparency is a obtained by hid

ing from the client the extent of replication and the locations of replicated files. The following para

graphs enumerate the specific properties which the authors' replication model will support 

Availability Property 
Subject to the degree of replication, a client can access the desired file if at all possible. Perfor

mance degradation is a reasonable cost to pay for high availability. 

Performance Property 
In general, performance is obtained at the expense of availability and visa-versa. However, high 

file read performance can be obtained if the client can be satisfied with a loose consistency 

guarantee. 
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Transparency Property 
As mentioned earlier, the basic ttansparency property is uniform naming in the face of replica
tion. 

5.2. Assumptions 

Several assumptions directed the design of our replication model. These assumptions fall into 
two categories: those related to the expected use of GAFFES and those related to the other components 
of GAFFES. 

Assumptions about expected use of GAFFES: 
We assume that GAFFES will be used mostly as a general purpose information distribution and 
sharing facility where performance and consistency requirements are flexible. We do not intend 
that GAFFES be used as a high-speed ttansactional system (e.g. banking). File reading is 
assumed to be more common than writing (this is a condition which seems to be true in many 
circumstances [Ousterhout 85]). In addition, there will probably be few writers per file (usually 
just the creator). This makes write conflicts rare. These assumptions are essential since the 
optimal design of a system, primarily one on the scale of GAFFES, is based on the the typical or 
average case [Lampson 83]. 

Assumptions about other components of GAFFES: 
The naming service is abstractly viewed as a database of information on a per file basis. The 
naming service is expected to return handles to files. Each client has a basic set of file opera
tions (e.g. open, read, write), which contain the appropriate replication service calls. An exam
ple of how this is done will be given. There is an underlying security mechanism which is used 
to authenticate machines participating in GAFFES and to validate file access. 

5.3. Replication Service Model 

The replication model can be viewed as set of interactions among five components. 

requester client machine and role1 of user requesting file operation 
name service distributed naming service 
replication server machine providing replication services 
replication sites file server storing file replica 
cache machine machine on which a file is cached (if different 

from client machine) 

Two of the above components require elaboration (complete details will be provided later in paper) 

replication server 
Replication servers provide replication functionality and store replication information. Each 
replication server is responsible for some subset of the globally active files. Thus each file has 
some set of servers which handle its replication. A replication server provides the following 
support for each file it is responsible for. 

1 A user or group of usen having access to a file. When a file is created the creator specifies a list of roles having read ac
cess and a list of roles having write access. 
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return handle to a replica 
functions mediate write locks 

notify cached sites of updates 
maintain list of replication sites 

storage 
maintain list of cache sites 
(for automatic update notification) 

replication site 
A replication site is a file server, within the trusted domain2, which stores a replica of the file. 

There is an important distinction between replication servers and replication sites. Replication servers 

are machines dedicated to providing the replication functionality (e.g. much like the name servers pro
vide naming functionality). Replication sites are simple file servers which store copies of a file. There 

is no inherent reason why replication servers and replication sites can or can not physically exist on the 

same machine. 

There are five interactions which take place among the aforementioned components. 

• requester and name service 
• requester and replication server 
• replication servers among themselves 
• replication server and replication sites 
• replication server and cache site 

2Collection of machines trusted by file creator (see section on security). 
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The requester of a file operation makes a call to the name service (e.g. a name server). The 
request returns a handle to the file, which is used to access the file. The handle can contain one of two 
kinds of information. H the file is not a replicated file then the naming service returns the machine 
identifier (MID) of the file server storing the file. In this case, the replication service does not get 
involved. If the file is replicated then the naming service returns a list of replication server Mills 
which have responsibility for the file. 

One of the replicated servers is chosen from the list returned by the naming service. The choice 
is made by the client machine because it is the only place capable of making an intelligent decision 
about which replication server is closest (assuming global topology and network status information is 
not kept). Clients can keep long term replication server availability information to facilitate this deci
sion. All interaction with a replication server takes place in the form of remote procedure calls. There 
are six replication service functions . 

.---------------.-------~--~~~----· 
rep open read open replicated file for read 
rep= open= write open replicated file for write 
rep_ write_ commit commit update made to a file 
rep_ write _abort abort an update to a file 
rep _register_ cache register file cacher 
rep _add_ site add replication site for file 
rep delete site delete replication site for file 

These six functions provide the functionality necessary to support replication. 

Replication servers communicate among themselves to insure that a majority have the same 
replication state for those files for which they are responsible. Replication state includes information 
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such as whether the file is in the process of being updated (e.g. after rep_open_ write but before 
rep_ write_ commit). 

Replication servers communicate with the replication sites to add new versions and to verify the 
storage of files. 

Replication servers communicate with cache sites to send file update notification. 

5.3.1. Availability Issues 

Availability is a function of the number of replication sites storing a particular file and the 
number of replication servers responsible for the file. The replication servers are responsible for 

finding an available replica of a file when requested by a rep_open_read or a rep_open_write call. A 

client machine opening a file with either of these two procedures is assured of contact with a replica if 
at all possible. 

The client can specify a consistency requirement which guides the replication server in finding 
the file. Consistency can be specified in two ways: need the the latest version or willing to accept a 

possibly out-dated version. Because of the expected uses of GAFFES, no read locks are provided. 
Consistency requirements are only valid for read operations since writes must be performed on the 

latest version after a write lock has been obtained. 

5.3.2. Performance Issues 

Performance of file access is improved by caching files at nearby machines (file server or client 

machine). Caching improves performance by reducing the access cost to files since the files are 
located in a more optimal fashion (e.g. closer). The authors believe that, in GAFFES, only read cach

ing is necessary. Thus a mechanism to flush back updated cache copies is not provided. The reason is 

that if a cache copy can be globally updated (the cache copies can be locally manipulated) a lock on 
the file will be required to avoid conflicts. This is the same situation as the normal file updating 

(without caching) when a replication site is near the writer. This is generally the case because the file 

creator defines the write access list and the replication site list. Thus there is very little if any added 
benefit in supporting cache updating. The three main issues related to caching are when to cache, 

where to cache, and how to maintain cache validity and consistency. 

5.3.2.1. Cache Decision 

The decision of whether to cache and where to cache a file is made by the user requesting access 
to a file. The user determines the location of the cache copy. There are two ways of making cache 

decision other than explicit user control. 

(1) File access operations can automatically cause files caching. This is the model used in the lTC 
system at CMU [Satyanarayanan 85]. 

(2) An automatic caching mechanism which dynamically responds to file usage patterns could be 
used. Such a facility would be extremely complex. Deciding if and when to cache would 
require a great deal of global system knowledge, such as storage capacities and communication 
bandwidths of nearby machines. Such knowledge would be particularly difficult to accumulate 
in a distributed system such as GAFFES due to the size of the network and the issues of trust 
(i.e. can you trust the information others give you). It may be feasible for a local cluster (e.g. 
LAN) to maintain such knowledge and share a cache. 

5.3.2.2. Cache Consistency 

File caching improves read performance at the cost of consistency. To alleviate this problem, an 

automatic notification mechanism is provided. In this scheme, cache sites register their location with a 

replication server responsible for the file. The replication server will then send notification to these 

sites when the file is updated. There are several disadvantages to such a mechanism. 
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• The replication servers incur an extra storage cost associated with maintaining cache notification 
lists. 

• The replication servers have an extra processing and communication burden as a result of 
notifications. 

However, notification updates have several advantages. 

• Subject to propagation delays and communication failures, the cache site will eventually contain 
the latest version, as in the Grapevine system [Birrell82]. 

• The decision of what to do with the notification is left up to the caching site. The cache site 
could choose to ignore the notification, or it could request the latest version if it was needed. 
Thus notification can be less expensive than sending the entire file. 

• Notifications allow replication servers to handle the update problem all at once, rather than each 
time a cache site validates its cache on open. This situation occurred in ITC, and the designers 
of that system suggested that a notification scheme is preferable and in fact scales better 
[Satyanarayanan 83]. 

5.3.3. Example Client File Operation 

In order to clarify the operation of the replication service, an example of a file access operation 
on a client is depicted in algorithmic form. The following example, shows how a client would imple
ment an open for read file operation. 

!* 
* Function takes a global file name as parameter, and retllrns the 
* replication site MID where the file is stored 
*I 
client_open_read(file_name) 

begin 

end 

!* call name service to obtain list of MID or single MID *I 
name_infonnation = name_service(file_name) 
I* if not replicated file then simply use the MID returned *I 
if name_infonnation.type = NOT _REPLICA TED 

retum(name_information.mid) 
else!* name_information.type =REPliCATED *I 

endif 

I* 
* choose closest replication server from among those returned 
*from name service. 
*I 

rep_server = closest(name_information.mid_list) 

I* 
* call replication server to find out machine id of file 
* server which is storing a replica of the file 
*I 
mid= rep_open_file(rep_server, file_name, READ) 
return( mid) 



39 

5.4. Replication Service Specifics 

The replication service provides four distinct services: replicated file reading, replicated file 
updating, caching mechanisms, and replication database control. 

5.4.1. Replicated File Reading 

Reading a replicated file is the simplest of the replication services. The basic operation is to map 
a logical file name, which represents the collection of replicas, into one of the physically replicated 
copies. The operation is provided by the rep _read_ open remote procedure call to a replication server. 
The procedure is straightforward if the requester is willing the accept a possibly out-dated version. 
The replication server obtains the replication site list for the file (it has this because the called replica
tion server has responsibility for the file), and then chooses one. The chosen replication site is con
tacted to verify that it is available and stores the desired file (note that the file is a file name plus a file 
version). If the answer to this question is negative, then the replication server will try another replica
tion site from the list It is possible that no replication site stores the requested version of the file, in 
which case the open operation fails. 

Some complexity is introduced when the requester must have the latest version. If an update is 
in progress then the replication server will refuse the read request. This means that the replication 
server will have to communicate with a majority of the other replication servers to determine if a write 
lock has been granted (unless the contacted replication server has a write lock set). If the requester is 
willing to accept a possibly out-dated version, then whether or not an update is in progress, the replica
tion server can proceed. 

summary of open for read operation 

1. obtain replication site list for file 
2. choose optimal replication site 
3. verify availability of file on replication site 
4. return machine id of re.J>lication site 

5.4.2. Replicated File Updating 

Updating a replicated file is an involved process. The complexity results from the necessity of 
avoiding inconsistency that would result from the update of two (or more) replicas of a file con
currently. Replicated file updating is a two step process: update and commit Note that file updating 
can only be done to the latest version, so if some other client has a write lock the write request fails. In 
order to update a file, the file is opened for writing with the remote procedure call rep_ open_ write to a 
replication server with responsibility for the file. The replication server attempts to establish a write 
lock on the file, on behalf of the requester. The write lock is necessary to prevent concurrent updates. 
Obtaining a file write lock is an atomic operation performed by the replication server, in which a 
majority of replication servers responsible for the file grant a lock to the requester. The atomic nature 
of the operation prevents deadlock. To avoid starvation, requesters wait a random time interval prior 
to retrying. If the write lock is granted, a copy of the latest version of the file is created on a replica
tion site and the write can proceed. The file writer determines which replication sites will store repli
cas of the new file. The file writer can also choose which one of these replication sites to use as the 
update site, assuming it is available. This copy serves a similar purpose as the shadow page in Locus 
[Walker 83). The copy does not become a version of the file until the update is successfully commit
ted. The commit operation is accomplished by the remote procedure call rep_ write_ commit to the 
same replication server that granted the write lock. As part of the commit process, the update server 
sends to each other replication server the list of replication sites which contain the new version. Also 
during this operation the new version is copied to the replication sites determined by the file creator, 
and the naming service is notified of the updated version. A two-phased commit protocol is not neces
sary since replication site lists are interpreted as hints to replica storage rather than fact (i.e. if a 



replication site does not contain the desired file, another replication site is contacted). 

5.4.3. Caching 

summary of file update operations 

update 
1. replication server contacts other replication servers 
2. replication server establishes lock with majority of servers 
3. replication site chosen to serve as update site 

commit 
1. notify other replication server that update is committed and 

send list of replication sites 
2a. propagate update to the replication sites 
2b. notify naming service of new version 
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There are two important aspects to caching: cache machine perspective and replication server 
perspective. 

5.4.3.1. Cache Machine Perspective 

When a cache copy of a file is created, it receives a name local to the caching machine. The 
caching machine maintains a mapping of global names to locally cached file names. On file opera
tions, this list is searched before invoking the global naming service. This accomplishes two goals of 
the replication service by reducing overhead when accessing cached files and maintaining naming 
transparency. Access performance to cached files is optimal because the replication and naming over
head is bypassed and the file is located at a nearby machine (of course the actual choice of where to 
cache is left up to the user or the user's operating system). 

The operation of caching a file can be summarized as follows. 

1. copy file to cache site (from replication site, by means of a replication server) 
2. save global to local name mapping 
3. register with a replication server (if update notification is desired) 

5.4.3.2. Replication Server Perspective 

Replication servers only need to know about cached files if automatic update notification is 
desired. The remote procedure call rep _register_ cache, is made to any replication server responsible 
for the file. If a cache file is registered, then whenever the file is updated, a notification of the fact will 
be sent to the cache machine. This notification can be used in a multitude of ways by the caching 
machine. For example, an operation could be initiated which would copy the file (with rep_open_file 
and then read the entire file over), thus updating the cache. A trigger can be explicitly activated (e.g. 
by an open operation on a cached file) which will cause the latest version of the file to be copied. The 
cache validation and update policy is client definable. 

5.4.4. Modifying the Replication Database 

There are two types of replication database modifications. Changing the replication site list for a 
file version and changing the replication server list for a file. 

Replication site list changes can be made to reflect the changing usage patterns of a file. Con
sider the following: 

(1) Old versions may be rarely accessed and probably do not need to be replicated in large number 
of places. In addition, replication sites may delete old versions of files. 
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(2) It may be difficult to predict the way a particular file will be used, and the creator may have 
made a poor choice of replication sites and wish to modify the list to better reflect actual usage 
patterns. 

The addition or deletion of replication sites for a particular version of a file does not pose a con
sistency problem because the list is interpreted as hints to replica storage. Thus the list is modified as 
soon as the add/delete request is received by a replication server. Subsequently, the same request is 
forwarded to the other responsible replication servers (for the file in question). The replication sites 
are updated as required. If a replication site is added then the appropriate file is copied, and if a repli
cation site is deleted then the file is deleted. 

1. modify list to reflect add/delete of entry in replication site list 
2. send add/delete to other responsible replication servers 
3. add or delete file from the appropriate replication site 

Modifying the replication server list for a particular file would allow one to dynamically control 
the file access availability to replicated files (since every file access has to go through a replication 
server). This poses a significant consistency problem. Replication servers participate in majority algo
rithms and so dynamic changes to the set of replication servers for a particular file compromises the 
integrity of the algorithms. The marginal advantage of adding this capability in comparison to the 
added complexity that is introduced, does not justify this feature. In any case, the file could be copied 
to a new file with the desired replication server list 

S.S. Alternative Mechanisms 

There are many ways of designing a replication service. The authors note some alternatives and 
reasons for not using them. 

combining name service and replication service 
Both the name service and the replication service contain per-file information, so combining the 
two might conserve storage space. However, replication information changes more often than 
naming information and only requires majority agreement rather than absolute agreement as in 
the case of the naming service. Forcing atomic replication information update would unneces
sarily degrade performance. Nevertheless, it may be possible to integrate the two services if 
naming consistency is relaxed. 

replication service functionality 
The authors' proposed model has most of the replication service functionality contained within 
the replication servers. The responsibility could be placed upon the clients (system might scale 
better), however it would require that each client implement the same replication service. In 
addition, issues of trust would make the the design very difficult 

5.6. Future Work and Remaining Questions 

The authors have defined the basic operation of a replication model for GAFFES. Without per
formance simulations, benefits of some features are unclear. Several issues remain partially or entirely 
unanswered. 

? Can the assignment of replication server responsibility to files be automated? Currently, it has to 
be defined by the file creator. 

? Likewise, can the assignment of replication sites be automated? Could the file creator (or file 
updator) simply define the degree of availability and performance desired (how would these be 
defined?) and then have the replication sites automatically chosen? Issues of trust would have to 
considered. 

? Can the naming service and replication service be physically and/or logically combined? 
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? If replication servers do not impose too much overhead, it might be advantageous to have access 
to cached files directed through them, thus freeing client machines from keeping mappings of 
the files they have cached. 

? How much overhead do replication servers impose? 

? Would read locks be useful? How can they be designed to avoid significant performance degra
dation? 

5.7. Summary 

The proposed replication service model is designed to provide three essential features for 
GAFFES: 

• availability control 
• performance control 
• transparency 

Availability is controlled in two ways: by the number of replication servers and by the number 
of replication sites. Increasing the number of replication servers increases the chance of being able to 
perform a file operation. Increasing the number of replication sites increases the availability of the file. 

Performance is controlled by carefully selecting the location and number of replication sites and 
replication servers and caching files. Replication sites should be chosen "close to" where the file will 
be most heavily accessed. There should be few replication servers if high write performance is 
required, but a larger number if high availability is important. If there is only one replication server 
for a file, a write lock can be quickly obtained. If replication servers are well connected, this may be a 
satisfactory configuration for most files. Caching is used when read performance is important (to 
avoid global communication) and absolute consistency is not essential. 

Transparency of the replicated nature of files is maintained in two ways. A global name of a file 
refers to the collection of replicas of the file (a mapping controlled by the replication servers). Refer
ences to cached files are mapped from the global file name to the local file name by the client machine. 

We believe that the replication model proposed in this section is appropriate for the read
oriented, few-writers type use that GAFFES would encounter. 

6. Triggers 
The design of GAFFES allows extensive use of triggers. Triggers have not received much atten

tion in current literature; this section includes a detailed discussion of triggers and their operation in a 
distributed file system. 

6.1. Definition of Triggers 

A trigger is defined as a program initiated by and associated with a standard system operation 
(its parent) and executed in addition to it. 

A trigger is represented by a triple consisting of a file name, the operation to trigger on, and a 
file containing an executable program. There may be multiple triggers associated with an operation. 
A trigger can execute simple commands itself, but cannot influence its parent (see below). Since a 
trigger executes a program, it can return results for future use. The trigger routine has access to all the 
data arguments available to the parent primitive operation. 
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6.2. Objectives or Triggers 

Triggers have many uses in a globally distributed file system. 

In Active Files 
Files can be treated as active objects which may respond to a request Numerous possibilities 
for the use of triggers exist. Examples include text files which reformat themselves when they 
are modified and files which decompress themselves upon use. 

For Consistency 
Relationships between files may be explicitly expressed in program semantics. Consistency 
relationships can be enforced. For example, deleting a record from a file updates the B-tree 
index of that file. 

For Extensibility 
Triggers provide a limited form of system primitive extensibility. The semantics of system 
operations may be extended by additional functionality of trigger programs. 

6.3. Characteristics or Triggers 

Triggers satisfy the following conditions. 

Causality 
A trigger cannot influence its parent operation, leading to the concept of causality of operation. 
This ensures consistency. Atomicity of trigger operations is not guaranteed if triggers are per
mitted to abort or delay indefinitely the parent operation. 

Given a primitive operationS and its associated triggers T1 , T2, T3 , ..... , infinite loops cannot 
exist 

Justification: The causality property of the triggered operations ensures that recursion is pre
cluded. Let S 1 , Tf, , H' , S 2 , Tf• , H' be a sequence of operations allowed by a system, 
where Si for all i denotes a primitive operation and Tf• refer to triggers associated with primitive 
Si . Causality implies that the precedence order Si , ..... , Tf• , .... , Si is invalid for all j and any 
i . This eliminates any recursion. 

Independence 
If triggers T 1 and T 2 are two triggers initiated simultaneously by the parent operation S , then 
they run independently of each other, and of S. This condition allows the triggers for an opera
tion to be executed in arbitrary order or in parallel. 

Flexibility or functionality 
Triggers are flexible, their functionality being determined either by the system or the user as will 
be discussed below. Since triggers can be arbitrary client programs, the functionality of triggers 
is potentially unlimited. 

6.4. Control or Triggers 

Triggers may be client programs; their access rights are strictly controlled. Triggers run under 
the following modes of control: 

User: 

Role: 

Triggers may run with the access rights of the user of the trigger. The advantage of providing 
for user control is the facility for utilizing the user's a priori knowledge. However, if the triggers 
run under the user's authority they must have access to the user's private key. The triggers may 
misuse this information. This creates a problem with security and authentication, which must be 
solved. 

A trigger will require access rights in order to carry out file operations. Since access rights in 
GAFFES can only be assigned to roles, the creator of a trigger must create a role to serve as an 
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identity for the trigger. The proxy problem discussion in the security section of this paper gives 
more detail. 

System: 
The system administrator of the controlling domain may add triggers. This system control is 
intended to provide for routine housekeeping triggers, using invisible triggers as described in 
the following paragraph. 

6.5. Classification or Triggers 

On the basis of their domain of control, triggers can be classified into the following two types: 

Invisible Triggers 
These are provided by the system to the primitive operation. The user or role under normal con
ditions would not be aware that they exist These triggers are programs which are routinely run, 
e.g. appending a compiled file with a ".o" suffix. These triggers could also be used for account
ing operations and other system housekeeping jobs associated with the primitive. In addition, 
invisible triggers are used to enforce atomicity of trigger operations. 

Primitive operations invoked may also be aborted. In a large scale distributed system, the atomi
city of the primitive operation is important It is necessary to ensure that triggers running at the 
behest of a primitive operation on a remote site are aborted too, in case the parent operation is 
aborted. Therefore triggers and their parents need to come under one atomic operation. 

Optional Triggers 
These triggers can be selected by the user/role. The creator of a trigger specifies whether this is 
allowed. One of the advantages of an active file system is the utilization of semantic informa
tion to speed up operations. Optional triggers offer the system a method of making the system 
user-interactive. Since the role best predicts its actions, the role can choose the triggers it may 
wish to run. The triggers are available as options displayed to the role as a trigger library. For 
example, a trigger need not compile source code each time the file is edited, it may do so .if the 
user/role opts for it This would avoid loading down the CPU with avoidable jobs. It may be 
argued that the user need not know about the existence of triggers, but performance improve
ments encourage such interaction. For example, many users are familiar with the operations 
they intend to execute, and their accompanying effects, and it would be advantageous to use this 
information [Garcia-Molina 84]. 

6.6. Execution or Triggers 

There remains the question as to whether triggers should run on the client machine or the server. 
If the triggers run on the server machine they could degrade performance. Running on the client 
machine would imply that the client machine is available during the operation. This situation is further 
complicated by the heterogeneous nature of clients. 

With the above considerations in mind, the following guidelines are suggested for triggers: 

A. The action of firing a trigger invokes the program on the server containing the file. Triggers must 
specify files containing code executable on the server storing the file. To support heterogeneous 
server types, the program could be a command script which selects the correct executable image 
for the server. 

B. In order to avoid overloading of servers, triggers may be subject to resource limitations specified 
by the server's administrators (for example, CPU, file access and real-time limitations). Any 
trigger exceeding these limits can be terminated. The primitive operation has to be rerun without 
the trigger, to maintain atomicity. 

C. Triggers are permitted to use remote procedure calls to procedures registered on the client's 
machine. Using the RPC mechanism, resource-intensive triggers can be run without overloading 
the servers. 
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The above design has several important features. Simple triggers are executed quickly on the 
server machines while resource-intensive triggers are forced to be offloaded. Heterogeneous clients are 

supported trivially because of the use of remote procedure calls. 

6. 7. Primitive Operations Using Triggers 

Triggers are associated with standard system operations. Trigger primitives are provided to the 
user only in the context (system state) of the standard primitive already used. That is, the system exe

cutes these commands in the context established by the standard operation. 

The following are the primitives for the active file system: 

No. Primitive 
1. display _trigger_options 
2. set_trigger_mask 
3. add_trigger 
4. delete_tri er 

Descri tion 
lists optional triggers. 
selects triggers to be executed. 
adds a program as a trigger. 
deletes a o as a tri er. 

The invisible triggers are executed by the system and the user does not control them. The invisi
ble triggers also execute anti-triggers for maintaining atomicity of operations, as explained later. 

6.8. Atomicity at the Trigger Layer 

The file system assumes a transactional support layer which guarantees transactional recovery 
and atomicity of operations. The choice presented to the system designers was either to use this layer 

to support atomicity of triggers or add a new layer for guaranteeing consistency in a globally distri

buted environment. We chose the latter solution, and a new layer of consistency at the trigger level 
was constructed, which we believe has a number of advantages in a distributed environment. 

The most significant advantage in building a new layer for guaranteeing atomicity, rather than 

assigning it to the underlying operating system transaction support system is simplicity [Stonebraker 
83]. An operating system log manager is unable to use the semantic content of the transactions; hence 

the operations have to be logged in detail. A logical logging system we propose simplifies recovery at 

the cost of computation only at recovery time. This speeds up the normal operation of an active distri
buted file system. 

Another advantage is the locking overhead saved by using logical locking in which only the 
triggers and primitives are stored. An operating system transaction manager locks relations for the 

entire duration of the transaction, reducing transaction throughput and concurrency. 

Anti-triggers introduced below simplify the rollback and atomicity constraints in an elegant 

manner. The transaction support mechanism has a coarser granularity of locks. We now describe in 

detail the atomicity of trigger operations. 

6.8.1. Anti-triggers 

Given a trigger Ti there exists an anti-trigger Ai which rolls back the effect of the operation Ti 
on the state of the system. As introduced before, each trigger associated with a primitive operation is 

independent of the other triggers, and consequently the anti-triggers are also independent of each 

other. In addition, in any sequence of operations, the anti-trigger Ti can only be invoked by the system 

if the trigger Ti has been invoked previously. Therefore, if a trigger has been executed, it is assumed 

that there exists an anti-trigger which undoes the effect of that operation. 

This suggests a guideline for programs which qualify as candidates for triggers: triggers should 

always have anti-triggers and vice versa. This may limit the flexibility of triggers, but it has the advan

tage of ensuring atomicity by allowing for the rollback of operations. Any program which does not 

have an anti-trigger may, however, be run separately. 
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6.8.2. Atomicity of Triggered Operations 

In this section we make precise the notion of atomicity of transactions using triggers and anti
triggers. Let S be the standard system operation being invoked, and let T; be the triggers set, and A; be 
their corresponding anti-triggers. Then either of the following sequence of events is executed; 

[ S , Tt , T2 , ...... ,TN ] 

or 

[Tt,T2, .... ,TJ,AJ,AJ-t, ...... ,At] ,l<N. 

is executed. 

The above definition for atomicity ensures that if the standard system primitive S has been 
aborted, then all the triggers are undone. The entire operation is governed by a three-phase protocol, 
which we discuss next. 

6.9. Three-phase Trigger Protocol 

The three-phase protocol, guaranteeing atomicity at the trigger layer, consists of the following 
phases. 

Phase 1 
The system primitive is invoked, but the system does not permit the execution of the primitive 
until it validates the task. This could mean that the system authenticates the request, searches for 
versions which the primitive wishes to access and related tasks. Until the primitive receives the 
acknowledgement from the system, the triggers cannot be activated. 

Phase 2 
When the acknowledgment from the system is received, the selected triggers run. The parent 
primitive could be aborted at any time. 

Phase 3 
If the primitive has been executed then all the triggers are in turn executed. The transaction log 
simply stores the primitive and the triggers invoked. In the case the parent primitive aborts, the 
anti-triggers are invoked and the operation rolls back. In this way atomicity at the trigger level 
is guaranteed. 

Triggers can operate at either the second phase or before the termination of the atomic operation, 
and the triggers are designated as pre-triggers and post-triggers respectively. 

The first two phases of the protocol are standard, the third phase is introduced as an atomicity 
and integrity constraint verifier. 

7. Overall Conclusions 
The design of GAFFES brings forth two important issues: the problems that arise in scaling ser

vices to a very large-scale distributed system, and the difficulties of combining global authentication, 
naming and replication services. The replication service in GAFFES allows users to choose the level 
of availability, performance, and consistency that they desire for their files. The naming service pro
vides unique, location-independent names. Descriptive names are also provided. making it easier for 
users to find files based on their content, purpose, or other attributes. The security system in GAFFES 
authenticates users and allows them to control the protection of their data and the operations on their 
files. The use of roles to partition a user's rights into separate units helps to restrict the damage due to 
a security leak. The formalization of trust as statements in a belief system is a new and useful idea for 
discussing security in systems without global trust. The triggers that GAFFES provides on files make 
it possible for file operations to cause further programs to execute. The design of the file system sup
ports embedded references in files and versions of files. It provides a simple interface to the file system 
for clients that do not have the power and resources to communicate directly with the naming, 
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authentication and replication services, but it also allows clients with the required power and resomces 
to interface closely with such services. 

In designing each of the components of GAFFES, we focussed on the needs of a globally distri
buted system: availability, reliability, performance, security, and the heterogeneity of the network and 
clients. The authentication service must protect users from unauthorized release of information and 
modification of data in an environment that lacks global trust and has no single administrative author
ity. The naming service must make it easy for users to avoid naming conflicts and must help locate 
files without fully qualified names. It must be possible to adjust the naming service as the system 
grows and shrinks without the need to rename any files. In a system as large as GAFFES, it is not pos
sible to pick a single balance of performance and availability that meets the needs of all clients, and as 
a result, the replication service in GAFFES provides flexible degrees of performance and availability. 
It is not practical for a global system to demand the same degree of computing power and sophistica
tion from all its clients. We therefore provide both simple and complex interfaces to the file system, 
making it possible for both simple and powerful clients to use GAFFES. 

We have described several examples of friction between the various components of GAFFES. 
Triggers present a security problem, since they act on behalf of a role in hidden ways. The cleanest 
solution to this problem requires giving a role to a trigger. The naming and authentication services are 
particularly tricky to combine. Users who trust only certain name servers must be able to make direct 
links to those servers and circumvent the usual name resolution process. Security provisions also com
plicate the naming service by requiring both recursive and iterative methods of name resolution in 
order that users be able to direct name resolution in accordance with their trust requirements. In addi
tion, there are conflicts between other features of GAFFES; embedded references are most easily han
dled by defining a file as a sequence of client-definable data blocks and embedded reference control 
blocks, but the ability to embed references to files without knowing the number or structure of the 
embedded file's blocks complicates matters if the embedded file is not immutable. 

A globally-distributed file system is only one example of the services that will be built as huge 
world-wide communication networks become publicly available. Most of these systems will need to 
incorporate security, and object naming, location, and replication mechanisms. Our design for 
GAFFES is a start towards combining these features in a large-scale globally-distributed system. 
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